Effects of gibberellic acid on potato (Solanum tuberosum L.) growth and development during off-season cultivation

Paper Details

Research Paper 09/07/2024
Views (743)
current_issue_feature_image
publication_file

Effects of gibberellic acid on potato (Solanum tuberosum L.) growth and development during off-season cultivation

Suresh Bharali, Narayan Sarkar, Nijam Gayary, Dipak Konwar, Gunajit Kalita
Int. J. Biosci. 25(1), 236-241, July 2024.
Copyright Statement: Copyright 2024; The Author(s).
License: CC BY-NC 4.0

Abstract

Solanum tuberosum L. (potato) is a crop in temperate regions, exhibiting exceptional food productivity and adaptability. Plant hormones can be used to increase the yields. Gibberellic Acid 4+7(GA4+7) is a plant growth regulator which can increase germination rate of some seeds and induce leaves. In this study, Potato tubers were treated with different concentration of  GA4+7 solution and another set of tubers were treated with distilled water(controlled).The different  growth parameters  such as number of sprouts, Length of seedlings, number of leaves and  Chlorophyll content was observed  after 15, 22, 29 and 36 days. The result showed that the number of sprouts of potato tubers was increased with the increasing concentration. The lengths of the potato seedling of GA4+7 treated tubers were more than the seedlings of the controlled tubers. Also, the GA4+7 treated seedlings produced more leaves and more chlorophyll content in leaves than the controlled seedlings. This result suggests that GA4+7 can induce germination of potato tubers and break the dormancy. It can enhance seedling growth by producing photosynthetically efficient leaves and finally the tuber growth takes place and ultimately the yield of potato tuber increases.

Balraji S. 2002. Effect of gibberellic acid on growth and yield of chilli. Journal of Agricultural Science 139(3), 271-276.

Chen J. 2020. Gibberellin and auxin interactions in plant growth and development. Journal of Plant Growth Regulation 39(2), 531-545.

Holmes JC, Lang NS. 1978. The effect of gibberellic acid on tuber yield and stem number in potatoes. Potato Research 21(2), 147-155.

Kumar P, Kumar V, Sharma R. 2020. Gibberellins: A review on their role in plant growth and development. Journal of Plant Growth Regulation 39(2), 531-545.

Li X. 2022. Gibberellin A4 promotes seed germination and seedling growth in Arabidopsis thaliana. Plant Physiology and Biochemistry 171, 110-118.

Liu Y. 2020. Gibberellin A7 inhibits seed germination and promotes root growth in rice. Plant Science 292, 110-118.

Moore PH. 1980. Gibberellic acid-induced increase in sugarcane yield. Crop Science 20(3), 367-370.

Palevitch D, Thomas TH. 1974. Gibberellin-induced germination of muskmelon seeds. Journal of Experimental Botany.

Poggi Pellegrin MF, Bulard C. 1976. Effect of gibberellic acid on germination of lettuce seeds. Physiologia Plantarum 38(2), 127-132.

Singh R. 2022. Gibberellins and plant responses to environmental stresses. Journal of Plant Growth Regulation 41(1), 1-13.

Wang Y. 2022. Gibberellin and cytokinin interactions in plant growth and development. Plant Physiology and Biochemistry 172, 110-118.

Yamaguchi S. 2020. Gibberellin A4 promotes stem elongation in Arabidopsis thaliana. Plant Physiology 182(2), 531-545.

Zhang Y. 2022. Gibberellin A7 promotes root growth and inhibits seed germination in maize. Plant Science 296, 110-118.

Related Articles

Modelling the current and future distribution of Okoubaka aubrevillei Pellegr. & Normand under climate change scenarios in Côte d’Ivoire

Sié Fernand Pacôme Ouattara, Franck Placide Junior Pagny, Kouassi Bruno Kpangui, Int. J. Biosci. 27(5), 237-246, November 2025.

Proximate analysis of pelleted sorghum-based feeds as substitute for corn

I. I. Juan S. Daquioag, Michael M. Uy, Int. J. Biosci. 27(5), 232-236, November 2025.

Evolution of the weight of carcasses and offal of Cobb 500 broiler chickens according to the age of slaughter

Soro Soronikpoho, Kouadio Kouakou Parfait, Kouassi Koffi Dongo, Brou Gboko Konan Gatien, Int. J. Biosci. 27(5), 225-231, November 2025.

Agronomic performance of the newly pruned coffee trees at the CSU Lal-lo old coffee plantation

Maribel L. Fernandez, Florante Victor M. Balatico, Ronel A. Collado, Int. J. Biosci. 27(5), 217-224, November 2025.

A comprehensive review and meta-analysis on Alzheimer’s genetics: Exploring the genetic architecture and its application in future genomic medicine

Shafee Ur Rehman, Shabeer Khan, Muhammad Usman, Sakarie Khadar Ibrahim, Int. J. Biosci. 27(5), 204-216, November 2025.

Effect of aqueous leaf extract of Senna occidentalis (Fabaceae) on induced arrhythmia in Rabbits

Obrou Jean Luc Amiltone, Nagalo Ousmane, Mossoun Mossoun Arsène, Abo Kouakou Jean-Claude, Int. J. Biosci. 27(5), 198-203, November 2025.

Targeting proteolytic enzymes in the hemoglobin degradation pathway to inhibit Plasmodium falciparum: An in silico approach

Sethupathi Virumandi, Elumalai Balamurugan, Aakash Ganesan, Sowmiya Ganesan, Srinidhi Raveenthiran, Int. J. Biosci. 27(5), 182-197, November 2025.

Composition and variation of milk from Djallonké goats fed with different diets in Burkina Faso

Alice Gisèle Sidibé-Anago, Vinsoun Millogo, Assouan Gabriel Bonou, Remadji Rufine Djikoldingam, Mariétou Sissao, Michel Kéré, Guy Apollinaire Mensah, Int. J. Biosci. 27(5), 173-181, November 2025.