Efficacy of different soilless substrates on tomato under hydroponic system

Paper Details

Research Paper 01/04/2018
Views (942)
current_issue_feature_image
publication_file

Efficacy of different soilless substrates on tomato under hydroponic system

Zia-Ul-Haq, Rai Niaz Ahmad, Jehangir Khan Sial, M. Yasin, M. Hanif
Int. J. Biosci. 12(4), 399-405, April 2018.
Copyright Statement: Copyright 2018; The Author(s).
License: CC BY-NC 4.0

Abstract

Hydroponic is an alternative food growing system to sustain agriculture in urban and water stress environment. The huge increase in population and alarming rate of water shortage caused more stress on agriculture resources thus there is a dire need to adopt this innovative agriculture of 21st century. It promises year round supply of quality vegetables with high yield. The performance and suitability of different substrates for the soilless culture of tomato (Lycopersicum esculentum) were studied at Institute of Hydroponics Agriculture, PMAS Arid Agriculture University Rawalpindi, over a two growing seasons under greenhouse condition, during 2015-17, employing five different treatment (substrates) viz. T1 (coco imported), T2 (indigenous coco), T3 (indigenous coco +25% zero grade stone crush by weight), T4 (rice husk), T5 (rice husk +25% zero grade stone crush by weight). The results indicated that soilless substrates have significant effects on tomato production. First season study, demonstrated that the sole Coco-imported and indigenous rice husk is a very good substrate for greenhouse grown tomatoes. While during second growing season sole use of coco imported media significantly affected the tomato yield 7.03kg plant-1 followed by indigenous rice husk and lowest yield among the subtract was recorded in coco indigenous +25% zero-grade stone by weight. It was concluded from the study that the treatment T1 containing imported coco had the best performance for tomato plant growth under soilless substrates.

Ahmad F O, Khan K, Sarwar S, Hussain A, Ahmad S. 2007. Performance evaluation of tomato cultivars at high altitude. Sarhad J. Agric 23, 582-585.

Aly MM. 1992. Investigation of potential uses of Rice Husks in water treatment process. Ph.D thesis, Faculty of Engineering, Cairo University p.110-135.

Anonymous. 2011. Agriculture statistics of Pakistan 2010-11, Ministry of Food and Agriculture, Govt. of Pakistan 1-2.

Anonymous. 2014. Pakistan Vision 2025. Planning commission, minisrry of planning development and reform. Govt of Pakistan. www.pc.gov.pk.

Awang Y, Shaharom AS, Mohamad RB, Selamat A. 2009. Chemical and Physical Characteristics of Cocopeat-Based Media Mixtures and Their Effects on the Growth and Development of Celosia cristata. American journal of agricultural and biological sciences 4, 63-71.

Beltran JM, Manzur CL. 2005. Overview of salinity problems in the world and FAO strategies to address the problem. p. 311-313. In: Proceedings of the international salinity Forum. April 25-27, 2005. Riverside CA.

Dyśko J, Kowalczyk W, Kaniszewski S. 2009. The influence of pH of nutrient solution on yield and nutritional status of tomato plants grown in soilless culture system. Veget. Crop. Res. Bull 70, 59-69

Ehret DL, Helmer T. 2009. A new wood fibre substrate for hydroponic tomato and pepper crops. Canad. J. Plant Sci 89, 1127-1132.

Govt. of Pakistan. 2008. Economic survey: economic advisor’s wing, finance division Islamabad. www.finance.gov.pk

Gruda N, Prasad M, Maher MJ. 2006. Soilless Culture. In: R. Lal (ed.) Encyclopedia of soil sciences. Taylor & Francis, Boca Raton, FL, USA.

Gruda N. 2009. Do soilless culture systems have an influence on product quality of vegetables J. Appl. Bot. & Food Qual 82, 141-147.

Khan GS. 1998. Soil salinity/sodicity status of Pakistan. Soil Survey of Pakistan Lahore. 59p.

Nazir MS. 1994. Crop Production. National Book Foundation, Islamabad

Pitman MG, Lanchli A. 2002. Global impact of salinity and agriculture ecosystem. p. 3-20. In: Salinity: Environment Plant Molecules. A. Lanchli and U. luttage (Eds.), Kluwer Academic, Dordrecht. The Netherlands.

Raviv M, Wallach R, Silber A, Bar-Tal A. 2002. Substrates and their analysis. In D. Savvas & H. Passam, eds. Hydroponic production of vegetables and ornamentals, p. 25–102. Embrio publications, Athens, 463 pp.

Related Articles

Unravelling the complex interactions between microplastics and PPCPs: The environment and health implications

Roshy Ann Mathews, S. Rajakumar, N. Aishwarya, M. Prashanthi Devi, Int. J. Biosci. 27(5), 40-72, November 2025.

Nutraceutical value of Gigantochloa atter and Bambusa blumeana

Eddilyn B. Plaza, Gemma A. Gruyal, Int. J. Biosci. 27(5), 34-39, November 2025.

Absence of climatic factors influence on the prevalence of COVID-19 in Benin: A spatiotemporal analysis

Houndonougbo Antoine, Lagaki Koudousse, Dramane Gado, Chogolou Ruth, Sanoussi Falilath, Kissira Islamiath, Sohou Stephane, Oloukou Freedy, Senou Elie, Yadouleton Anges, Int. J. Biosci. 27(5), 16-23, November 2025.

Isopulegol mitigates high glucose-induced oxidative stress in HK-2 cells via activation of the Nrf2/ARE pathway

Mathew Maria Caroline Rebellow, Ravishankar Sarumathi, Chandrasekaran Sankaranarayanan, Int. J. Biosci. 27(5), 6-15, November 2025.

Exploring Ctenolepis garcinii as a natural anti-diabetic agent: A phytochemical, biochemical and molecular docking approach

A. M. Thafshila Aafrin, R. Anuradha, Int. J. Biosci. 27(4), 208-214, October 2025.

Assessment of the population dynamics of microorganisms in mountainous brown soils of Gobustan in relation to soil-climate conditions

Zohra N. Mammadzada, Basti N. Alyeva, Sevinch J. Garayeva, Nizami R. Namazov, Int. J. Biosci. 27(4), 203-207, October 2025.