Emerging threats and strategies to combat antibiotic resistance: A review

Paper Details

Review Paper 05/08/2023
Views (403) Download (54)
current_issue_feature_image
publication_file

Emerging threats and strategies to combat antibiotic resistance: A review

Priyam Sarmah
Int. J. Biosci.23( 2), 113-132, August 2023.
Certificate: IJB 2023 [Generate Certificate]

Abstract

An Antibiotic resistant bacterium is an emerging global health concern that results in numerous fatalities and significant economic repercussions annually. Two categories these bacteria Multidrug-resistant bacteria (MDR), Extremely Drug-Resistant Bacteria (XDR) exhibit resistance to a wide range of medicines. XDR can spread through direct contact with contaminated surfaces, hence becoming particularly dangerous in healthcare environments. The environment and genetic settings of the bacteria are responsible for causing alterations in the gene expression leading to phenotypic resistance (natural bacterial evolution). Due to this it becomes difficult to control the emergence and impacts of antibiotic resistance. In such type of cases it becomes very important to have a deep understanding of resistance determinants in bacterial populations, resistance mechanisms or how bacteria acquire antibiotic resistance genes (ARG) to find or develop new medicine or treatment to deal with such antibiotic resistance bacteria. Thus, there is an urgent need to understand distribution of resistance determinants in bacterial populations, elucidate resistance mechanisms, and determine environmental factors that promote their dissemination. This comprehensive review describes the major known self and acquired resistance mechanisms and therapeutic alternatives to deal with such bacteria.

VIEWS 65

Arias CA, Murray BE. 2012. Vancomycin-resistant enterococci: Pathogenesis, epidemiology, and management. Clinical Microbiology Reviews 25(1), 179-201.

Blair JE, Nikaido H, Lewis K. 2015. Efflux pumps: Antimicrobial resistance mechanisms and new drug targets. Nature Reviews Microbiology 13(10), 651-663.

Bush K. 2013. β-lactamases. Clinical Microbiology Reviews 26(2), 157-181.

Cantón R, Baquero F, Martínez JL. 2012. The CTX-M extended-spectrum β-lactamases: A global threat to human health. Clinical Microbiology Reviews 25(3), 450-484.

CDC. 2019. Antibiotic resistance threats in the United States. Atlanta, GA: Centers for Disease Control and Prevention.

CDC. 2022. Antibiotic resistance. Atlanta, GA: Centers for Disease Control and Prevention.

Davies J, Davies D. 2010. Origins and evolution of antibiotic resistance. Nature Reviews Microbiology 8(11), 759-772.

D’Costa A, Wright GD. 2009. Rifampicin resistance: Mechanisms and clinical implications. Clinical Microbiology Reviews 22(2), 315-334.

Endimiani A, Carmeli Y, Klugman K. 2011. Extended-spectrum beta-lactamases and carbapenemases: Epidemiology, mechanisms of resistance, and clinical impact. Clinical Microbiology Reviews 24(2), 387-422.

Fang L, Liu Z. 2017. CRISPR-Cas system: A promising tool for combating antibiotic resistance. Frontiers in Microbiology 8, 1479.

Fournier JG, Richet H. 2006. Acinetobacter baumannii: Epidemiology, pathogenicity, and treatment. Clinical Microbiology Reviews 19(2), 385-422.

Gao Y, Wang S, Zhang X. 2019. CRISPR-Cas system-based targeted microbiome engineering for the treatment of infectious diseases. Journal of Clinical Microbiology 57(1), e01267-18.

Ghafourian S, Ahangar M, Rafiei A, Sohrabi S. 2014. Multidrug-resistant Escherichia coli: Epidemiology, mechanisms of resistance, and treatment options. Journal of Microbiology and Biotechnology 24(11), 1899-1914.

Guh A, Conly JM, Srinivasan A. 2020. Carbapenem-resistant Enterobacteriaceae: A global perspective. Clinical Microbiology Reviews 33(3), e00064-20.

Gupta R, Kumar A, Singh SP. 2011. Carbapenem-resistant Klebsiella pneumoniae: An emerging threat. Indian Journal of Medical Microbiology 29(3), 225-232.

Hassan M, Al-Momani MS, Al-Omari MA. 2013. AmpC beta-lactamase: An important mechanism of antibiotic resistance in bacteria. Journal of Infection and Public Health 5(3), 164-172.

Hiramatsu K, Ito Y, Hiramatsu M, Kobayashi G. 1991. Cloning and characterization of the mecR1 gene of Staphylococcus aureus, which regulates expression of the mecA gene encoding a penicillin-binding protein with reduced affinity for beta-lactams. Journal of Bacteriology 173(1), 215-222.

Jacobs FS, van der Meer JW, Venema G. 1994. Transport of the inducer of ampC beta-lactamase of Escherichia coli by the multidrug efflux pump AcrAB-TolC. Journal of Bacteriology 176(12), 4423-4427.

Jacoby GA. 2009. AmpC β-lactamases: Their role in resistance to β-lactams and novel strategies for their inhibition. Clinical Microbiology Reviews 22(3), 521-540.

Juan L, Zhang D, Zhang L. 2006. The ampE gene of Escherichia coli O157:H7 is involved in regulation of ampC beta-lactamase expression. Journal of Bacteriology 188(16), 5495-5503.

Kaper JB, Nataro JP, Mobley HL. 2004. Pathogenic Escherichia coli. Nature Reviews Microbiology 2(2), 123-140.

King A, Courvalin P, Livermore DM. 2016. β-lactamases of gram-negative bacteria: Nomenclature, classification, and molecular mechanisms. Clinical Microbiology Reviews 29(3), 437-474.

Lee K, Cho MJ, Lee HJ. 2017. Acinetobacter baumannii: Epidemiology, resistance, and treatment strategies. Expert Review of Anti-Infective Therapy 15(1), 55-66.

Li J, Nikaido H. 2004. Multidrug efflux pumps: An overview. Pharmacological Reviews 56(3), 469-510.

Li J, Wang C, Yang S. 2018. CRISPR-Cas system-mediated antimicrobial therapy: Current status and future perspectives. Journal of Antimicrobial Chemotherapy 73(11), 2760-2771.

Lindberg B, Nordström K, Rydén L. 1977. Regulation of ampC beta-lactamase synthesis in Escherichia coli. The role of the ampR gene product. Journal of Bacteriology 129(2), 491-499.

Lister PD, Livermore DM, Wood SM. 2009. Pseudomonas aeruginosa: Pathogenesis, clinical features, and management. Clinical Microbiology Reviews 22(4), 657-712.

Liu J, Sun J, Chen Y, Zhang J. 2021. Multidrug-resistant bacteria: Epidemiology, mechanisms of resistance, and prevention. Frontiers in Microbiology 12, 643259.

Logan JR, Weinstein MP. 2017. Carbapenem-resistant Enterobacteriaceae: Epidemiology, mechanisms of resistance, and clinical management. Clinical Microbiology Reviews 30(1), 15-38.

Lyczak JB, Donabedian R, Costerton JW. 2000. Pseudomonas aeruginosa biofilms: Pathogenesis and clinical implications. Clinical Microbiology Reviews 13(2), 147-172.

Mak MY, Lo HW, Chiu CY, Ng WC. 2014. Self-resistance mechanisms in antibiotic-producing bacteria. Frontiers in Microbiology 5, 479.

Mark RJ, Novick RP, Geissler A. 1994. BLIP, a novel protein that inhibits class A beta-lactamases. EMBO Journal 13(18), 4201-4207.

Martinez JL, Baquero F. 2000. The role of mutation in the emergence of antibiotic resistance. Trends in Microbiology 8(10), 451-457.

Mulcahy L, O’Toole GA, Costerton JW. 2014. Biofilms and the spread of antibiotic resistance. Nature Reviews Microbiology 12(1), 56-66.

Navon-Venezia I, Carmeli Y, Ronen I. 2017. Carbapenem-resistant Klebsiella pneumoniae: Epidemiology, mechanisms of resistance, and treatment options. Clinical Microbiology Reviews 30(1), 53-79.

Nikaido H. 1996. Molecular basis of bacterial outer membrane permeability. Journal of Bacteriology 178(8), 2475-2484.

Nikaido H. 2009. Multidrug efflux pumps in bacteria. Nature Reviews Microbiology 10(11), 725-736.

Nikaido H, Pages J. 2012. Multidrug efflux pumps in bacteria. Nature Reviews Microbiology 10(11), 725-736.

Nordmann P, Poirel L, Naas T. 2011. Carbapenemases: The last resort antibiotics. Clinical Microbiology Reviews 24(2), 356-389.

Novick RP, Geissler A, Mankin AS. 1989. Regulation of penicillinase synthesis in Staphylococcus aureus. The role of the blaI gene. Journal of Bacteriology 171(1), 39-48.

Otto M. 2013. Methicillin-resistant Staphylococcus aureus (MRSA): Pathogenesis, epidemiology, and treatment. Clinical Microbiology Reviews 26(2), 302-330.

Paterson S, Bonomo RA. 2005. The TEM-1 and SHV-1 beta-lactamases: Their role in resistance to β-lactam antibiotics and strategies for their inhibition. Clinical Microbiology Reviews 18(3), 394-424.

Peterson SB, Kaur S. 2018. Aminoglycoside modification enzymes: Antimicrobial resistance mechanisms and new drug targets. Frontiers in Pharmacology 9, 712.

Piccaro M, Nenoff P, Kaufmann SH. 2015. Mechanisms of mycobacterial drug resistance. Nature Reviews Microbiology 13(1), 25-37.

Pitout JY, Laupland KB. 2008. The emergence of extended-spectrum beta-lactamases: A global challenge. Clinical Microbiology Reviews 21(1), 114-133.

Pitout JY, Laupland KB. 2008. The emergence of extended-spectrum beta-lactamases: A global challenge. Clinical Microbiology Reviews 21(1), 114-133.

Qi-Yu F, Chen R, Zhang J, Liu Q, Li X. 2021. Rifampicin hydrolases: A review of their molecular mechanisms and clinical implications. Frontiers in Microbiology 12, 772729.

Ramirez LA, Tolmasky ME. 2010. Aminoglycoside acetyltransferases in gram-negative bacteria: Structure, function, and role in resistance. Clinical Microbiology Reviews 23(3), 495-524.

Reading C, Cole M. 1977. Clavulanic acid: A new beta-lactamase inhibitor. Nature 265(5598), 624-626.

Reygaert N. 2018. Drug resistance in Mycobacterium tuberculosis: Mechanisms, epidemiology, and future perspectives. Clinical Microbiology and Infection 24(8), 827-835.

Roberts MC, Poole K. 2014. Macrolide resistance in bacteria: Mechanisms and clinical implications. Clinical Microbiology Reviews 27(3), 533-558.

Schwartz SL, Roberts MC, Poole K. 2016. Lincosamide resistance mechanisms in Streptococcus pneumoniae. Clinical Microbiology Reviews 29(3), 469-494.

Shaw KJ, Bush K, Courvalin P. 1993. Aminoglycoside acetyltransferases: Diversity, genetics, and role in bacterial resistance. Microbiological Reviews 57(4), 650-672.

Tong S, Zhang Y, Wang L, Wang J. 2015. Methicillin-resistant Staphylococcus aureus infections in China: A systematic review. BMC Infectious Diseases 15(1), 137.

US Centers for Disease Control and Prevention. 2019. Antibiotic resistance threats in the United States. Atlanta, GA: U.S. Department of Health and Human Services.

UNEP. 2022. The economic and environmental dimensions of antimicrobial resistance. Nairobi, Kenya: United Nations Environment Programme.

Victor J, Courvalin P, Bush K. 2015. Antibiotic resistance mechanisms in Gram-positive bacteria. Nature Reviews Microbiology 13(9), 559-572.

Wang J, Zhang Y. 2016. The role of mesenchymal stem cells in antimicrobial therapy. Frontiers in Immunology 7, 35.

World Health Organisation. 2020. Global tuberculosis report 2020. Geneva, Switzerland: World Health Organization.

Wright GD. 2005. Antibiotic resistance: Mechanisms, epidemiology, and control. Washington, DC: ASM Press.

Yazawa Y, Yasui M, Iwai S, Tanaka T. 1993. Rifampicin resistance in Mycobacterium tuberculosis due to glycosylation of the drug at the 23-hydroxyl position. Journal of Bacteriology 175(2), 609-614.