Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin
Paper Details
Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin
Abstract
Cowpea productivity in Benin remains low, largely due to multiple constraints-chief among them, insect infestations. Despite this, few studies have comprehensively examined the insect fauna associated with cowpea, limiting the development of targeted and effective management strategies. This study addresses the gap by investigating the entomofaunal diversity within cowpea cropping systems in the Central Benin cotton zone. Field sampling was conducted during the rainy season, from July to October 2024, across three distinct sites. The methodology included direct observations, insect collection from plants, and the use of buried traps. A total of 79 insect species, spanning 73 genera and 37 families across seven orders, were identified. The most represented were Hemiptera (34%), Coleoptera (25%), Lepidoptera (16%), Diptera (10%), Thysanoptera (6%), Orthoptera (5%), and Hymenoptera (3%). Biodiversity indices-Shannon (2.78 – 2.81), Equitability (0.67 – 0.80), and Simpson (0.91) — indicate a high level of species diversity, with a slight dominance of individuals from a few key families. These included Chrysomelidae, Crambidae, Aphididae, Coreidae, Cicadellidae, Agromyzidae, and Thripidae. Analysis of functional groups across cowpea phenological stages revealed a marked predominance of pest species over beneficial insects throughout the crop cycle. These findings highlighted the rich insect biodiversity within cowpea ecosystems in central Benin, while also underscoring a functional imbalance driven by pest dominance. The results advocate for integrated management strategies that prioritize the conservation of beneficial insects and the continuous monitoring of pest populations to enhance cowpea productivity.
Abdurahiman UC, Mohamed UVK, Remadevi OK. 1982. Studies on the biology of a predator, Cardiastethus sp. (Hemiptera: Anthocoridae) found in the galleries of Nephantis serinopa meyr. (Lepidoptera: Xylorictidae). Current Science 51(11), 574-576. http://www.jstor.org/stable/24086337
Ahenkora K, Adu Dapaah HK, Agyemang A. 1998. Selected nutritional components and sensory attributes of cowpea (Vigna unguiculata [L.] Walp) leaves. Plant foods for human nutrition 52(3), 221-229. https://doi.org/10.1023/a:1008019113245
Ahmed BI, Onu I, Mudi L. 2009. Field bioefficacy of plant extracts for the control of post flowering insect pests of cowpea (Vigna unguiculata (L.) Walp.) in Nigeria. Journal of Biopesticides 2(1), 37-43. https://doi.org/10.57182/jbiopestic.2.1.37-43
Aholoukpè HSN, Amadji GL, Koussihouèdé HKI. 2020. Stocks de carbone dans les sols des zones agro-écologiques du Bénin. In Chevallier T, Razafimbelo TM, Chapuis-Lardy L, Brossard M, Eds. Carbone des sols en Afrique. Impacts des usages des sols et des pratiques agricoles. FAO : IRD Éditions, 101-112). https://doi.org/10.4000/books.irdeditions.34917.
Ajao FO, Osipitan AA, Pitan OR, Lawal OI. 2016. Effect of Plant Spacing on Abundance of Major Insect Pests of Cowpea [Vigna unguiculata (L.) Walp] and Crop Yield. Journal of Organic Agriculture and Environment 4(1), 24-33. DOI: 10.5923/j.ijaf.20140401.04
Aktar MW, Sengupta D, Chowdhury A. 2009. Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology 2(1), 1-12. DOI: 10.2478/v10102-009-0001-7
Alavo TBC. 2010. Effet répulsif du kaolin contre les populations d’Aphis craccivora (Homoptera : Aphididae) sur le niébé (Vigna unguiculata). International Journal of Biological and Chemical Sciences 4(2), 407-414. https://www.ajol.info/index.php/ijbcs/art icle/view/58138
Ali SA. 2009. Occurrence and distribution of insect pest attacking some vegetative plants at five localities of EL Qassin province, Saudi Arabia. Pakistan Entomologist 31(2), 148-154.
Appert J, Deuse J. 1982. Les Ravageurs des Cultures Vivrières et Maraîchères sous les Tropiques. Paris: Maisonneuve et Larose, p 420.
Atuo FA, O’Connell TJ. 2017. The landscape of fear as an emergent property of heterogeneity: Contrasting patterns of predation risk in grassland ecosystems. Ecology and Evolution 7(13), 4782-4793. https://doi.org/10.1002/ece3.3021
Bapfubusa B, Rasplus JY, Fabres G. 1990. L’entomofaune Associée aux Gousses des Légumineuses du Genre Vigna dans Différents Habitats de la Zone Forestière du Centre-Cameroun. Annales de la Société entomologique de France 26, 203-210.
Bello S, Babalakoun AO, Zoudjihékpon J, Coulibaly KA. 2018. Diversité de l’entomofaune du niébé (Vigna unguiculata (L.) Walpers) au Nord-Ouest du Bénin. Journal of Applied Biosciences 132(1), 13424-13438. https://dx.doi.org/10.4314/jab.v132i1.4
Bordat D, Arvanitakis L. 2004. Arthropodes des cultures légumières d’Afrique de l’Ouest, centrale, Mayotte et Réunion. Montpellier, France : CIRAD/FLHOR, p 291.
Boukar O, Belko N, Chamarthi S, Togola A, Batieno J, Owusu E, Haruna M, Diallo S, Umar ML, Olufajo O, Fatokun C. 2019. Cowpea (Vigna unguiculata): Genetics, genomics and breeding. Plant Breeding 138, 415-424. https://doi.org/10.1111/pbr.12589
Boukar O, Fatokun CA, Huynh BL, Roberts PA, Close TJ. 2016. Genomic tools in cowpea breeding programs: status and perspectives. Frontiers in Plant Science 7, 757. https://doi.org/10.3389/fpls.2016.00757
Chevallier T, Razafimbelo TM, Chapuis-Lardy L, Brossard M. 2020. Carbone des Sols en Afrique. FAO: IRD Éditions, p 272. DOI: https://doi.org/10.4000/books.irdeditions.34867
Chougourou DC, Agbaka A, Adjakpa JB, Koutchika RE, Kponhinto UG, Adjalian EJN. 2012. Inventaire préliminaire de l’entomofaune des champs de tomates (Lycopersicon esculentum Mill) dans la Commune de Djakotomey au Bénin. International Journal of Biological and Chemical Sciences 6(4), 1798-1804. https://doi.org/10.4314/IJBCS.V6I4.34
Dabiré C. 2001. Étude de quelques paramètres biologiques et écologiques de Clavigralla tomentosicollis STAL., (Hemiptera : Coreidae) punaises suceuses des gousses du niébé (Vigna unguiculata (L.)) dans une perspective de lutte durable contre l’insecte au Burkina Faso. PhD thesis, Université de Cocody, p 179.
Dajoz R. 2006. Précis d’écologie (8ème edn). Paris : Dunod.
Delvare G, Aberlenc HP. 1989. Les insectes d’Afrique et d’Amérique tropicale. Clés pour la reconnaissance des familles. Montpellier : CIRAD-GERDAT, p 302.
Diouf D, Hilu KW. 2005. Microsatellites and RAPD Markers to Study Genetic Relationships Among Cowpea Breeding Lines and Local Varieties in Senegal. Genetic Resources and Crop Evolution 52, 1057-1067. https://doi.org/10.1007/s10722-004-6107-z
Donovan BJ. 2003. Potential manageable exploitation of social wasps, Vespula spp. (Hymenoptera: Vespidae), as generalist predators of insect pests. International Journal of Pest Management 49(4), 281-285. https://doi.org/10.1080/0967087031000123698
DSA (Direction de la Statistique Agricole). 2024. Les chiffres définitifs de la campagne agricole 2023-2024 au Bénin. MAEP. Cotonou, Bénin. Available Source: https://dsa.agriculture.gouv.bj. March 19, 2025.
Dugje IY, Omoigui LO, Ekeleme F, Kamara AY, Ajeigbe H. 2009. Farmers’ Guide to Cowpea Production in West Africa. International Institute of Tropical Agriculture, Ibadan, Nigeria: IITA, p 20.
Dzeme WD, Niba AS, Asiwe JAN. 2010. Effects of insecticide spray application on insect pest infestation and yield of cowpea (Vigna unguiculata (L.) Walp) in the Transkei, South Africa. African Journal of Biotechnology 9(11), 1673-1679. https://doi.org/10.5897/AJB2010.000-3018
Eigenbrode SD, Adhikari S. 2023. Climate change and managing insect pests and beneficials in agricultural systems. Agronomy Journal 115, 2194-2215. https://doi.org/10.1002/agj2.21399
FAO (Food and Agricultural Organizations of the United Nations). 2017. FAOSTAT. Available Source: http://www.fao.org/faostat/en/#data/QC. January 22, 2024.
Fatondji D, Martius C, Vlek PLG. 2018. Gestion durable des ravageurs du niébé. Agriculture, Ecosystems & Environment 256, 12-20.
Franke AC, van den Brand GJ, Vanlauwe B, Giller KE. 2018. Sustainable intensification through rotations with grain legumes in Sub-Saharan Africa: A review. Agriculture Ecosystems & Environment 261, 172-185. https://doi.org/10.1016/j.agee.2017.09.029
Gbaguidi AA., Assogba P, Dansi M, Yedomonhan H, Dansi A. 2015. Caractérisation Agromorphologique Des Variétés de Niébé Cultivées Au Bénin. International Journal of Biological and Chemical Sciences 9(2), 1050‑1066. https://doi.org/10.4314/ijbcs.v9i2.40.
Gopalakrishnan TR. 2007. Vegetable crops, Vol. IV. New Delhi: New India Publishing, 181-187.
Holling CS. 1961. Principles of insect predation. Annual Review of Entomology 6, 163-182. https://doi.org/10.1146/annurev.en.06.010161.001115
Houenou A, Hinnou CL, Maliki R, Tede S. 2022. Analyse genre de la sélection participative des cultivars locaux de niébé cultivés au centre du Bénin. Annales De l’Université De Parakou – Série Sciences Naturelles Et Agronomie 12(1), 43-60. https://doi.org/10.56109/aup-sna.v12i1.12
Kamara AY, Omoigui LO, Kamai N, Ewansiha SU, Ajeigbe HA. 2018. Improving Cultivation of Cowpea in West Africa. In: Sivasankar S, Bergvinson D, Gaur P, Kumar S, Beebe S, Tamò M, Eds. Achieving Sustainable Cultivation of Grain Legumes, Vol II. Cambridge, UK: Burleigh Dodds Science Publishing, 235-252. http://dx.doi.org/10.19103/AS.2017.0023.30
Lienard V, Seck D. 1994. Revue des Methodes de Lutte Contre Callosobruchus Maculatus (F.) (Coleoptera: Bruchidae), Ravageur des Graines de Niebe (Vigna Unguiculata (L.) Walp) en Afrique Tropicale. International Journal of Tropical Insect Science 15, 301-311. https://doi.org/10.1017/S1742758400017616
MAEP. 2016. Catalogue Béninois Des Espèces Et Variétés Végétales (CaBEV), 2nd Edition. Ministère De L’Agriculture De l’Elevage Et De La Pêche; INRAB/DPVPPAAO/ ProCAD/MAEP & CORAF/WAAPP, Bibliothèque Nationale Du Bénin, 4ème Trimestre Dépôt Légal No. 8982 Du 21 Octobre 2016.
Mc Carthy BC. 2004. Review of Measuring Biological Diversity, by A. E. Magurran. The Journal of the Torrey Botanical Society, 131(3), 277-278. https://doi.org/10.2307/4126959
Mohammadou M, Fouelifack-Nintidem B, Adamou M, Taïmanga KD, Tsekane SJ, Ngamaleu-Siewe B, Laure Kenne EL, Yomon AK, Martin Kenne M. 2023. Diversity and Abundance of Pest Insects Associated with Vigna unguiculata (L.) Walp., 1843 (Fabales: Fabaceae) in Bockle and Dang Localities (North-Cameroon). American Journal of Entomology 7(2), 38-61. https://doi.org/10.11648/j.aje.20230702.12
Mukendi R. 2010. Évaluation de l’efficacité de biopesticides botaniques contre l’insecte ravageur (Ootheca mutabilis Sahlb. Coleoptera: Chrysomelidae) des feuilles de niébé (Vigna unguiculata (L.) Walp.). Mémoire de DEA, Université de Kinshasa, République Démocratique du Congo.
Ndiaye A, Mbow B, Diallo I, BA I, Faye M, Diome T, Brevault T, Sembene M. 2023. Inventory of the entomofauna associated with the cultivation of sweet corn in Senegal: Report of the fall armyworm Spodoptera frugiperda. Journal of Entomology and Zoology Studies 11(3), 9-23. https://doi.org/10.22271/j.ento.2023.v11.i3a.9194
Noyes JS, Valentine EW. 1989. Mymaridae (Insecta: Hymenoptera)-introduction, and review of genera. Fauna of New Zealand 17, 1-100. https://doi.org/10.7931/J2/FNZ.17
Omoigui LO, Kamara AY, Batieno J, Iorlamen T, Kouyate Z, Yiizagla J, Diallo S, Garba U. 2018. Guide to Cowpea Production in West Africa. Ibadan, International Institute of Tropical Agriculture (IITA), p 52.
Pitan OOR, Odebiyi JA. 2001. Crop losses in cowpea due to the pod-sucking bugs Riptortus dentipes, Mirperus jaculus, Anoplocnemis curvipes and Nezara viridula. International Journal of Tropical Insect Science 21(3), 237-241. https://doi.org/10.1017/S1742758400007633
Poutouli W, Silvie P, Aberlenc HP. 2011. Hétéroptères phytophages et prédateurs d’Afrique de l’Ouest. Wageningen (NLD) ; Versailles : CTA ; Quae, p 79.
Ramade F. 2009. Eléments d’écologie : Ecologie fondamentale – 4e édition. France : Dunod, p 704.
Sahayaraj K, Balasubramanian R. 2016. Reduviid: An Important Biological Control Agent. In: Sahayaraj K, Balasubramanian R, Eds. Artificial Rearing of Reduviid Predators for Pest Management. Singapore: Springer, 1-28. https://doi.org/10.1007/978-981-10-2522-8_1
Santana-Baños Y, Carrodeguas-Díaz S, Rodríguez-Espinosa FL, Pupo-Pérez RA, Díaz-Barrio M, del Busto-Concepción A. 2023. Insects associated with cowpea in agroecosystems of Pinar del Río, Cuba. Revista De Protección Vegetal 38, 1-4.
Sharma HC, Srivastava CP, Durairaj C, Gowda CLL. 2010. Pest management in grain legumes and climate change. In: Yadav S, Redden R, Eds. Climate Change and Management of Cool Season Grain Legume Crops. Dordrecht: Springer, 115-139. https://doi.org/10.1007/978-90-481-3709-1_7
Simpson EH. 1949. Measurement of diversity. Nature 163, 688. https://doi.org/10.1038/163688a0
Singh SR, Jackai lEN, Dos Santos JHR, Adalla CB. 1990. Insect pests of cowpea. In: Singh SR, Ed. Insect Pests of Tropical Food Legumes. Chichester, UK: John Wiley and Sons Ltd., 43-89.
Skendžić S, Zovko M, Živković IP, Lešić V, Lemić D. 2021. The impact of climate change on agricultural insect pests. Insects 12(5), 440. https://doi.org/10.3390/insects12050440
Sodedji FAK, Ryu D, Choi J, Agbahoungba S, Assogbadjo AE, N’Guetta SPA, Jung JH, Nho CW, Kim HY. 2022. Genetic Diversity and Association Analysis for Carotenoid Content among Sprouts of Cowpea (Vigna unguiculata L. Walp). International Journal of Molecular Sciences 23(7), 3696. https://doi.org/10.3390/ijms23073696
Soro L, Soro S, Coulibaly T, Fondio D. 2021. Effect of three synthetic chemical insecticides on Cheilomenes sulphurea (Coleoptera: Coccinellidae), a predatory insect in cotton field in Ferkéssedougou, northern Côte d’Ivoire. IOSR Journal of Agriculture and Veterinary Science 14(2), 14-20. https://doi.org/10.9790/2380-1402021420
Tendeng E, Labou B, Djiba S, Diarra K. 2017. Actualisation de l’entomofaune des cultures maraîchères en Basse Casamance (Sénégal). International Journal of Biological and Chemical Sciences 11(3), 1023-1028. https://dx.doi.org/10.4314/ijbcs.v11i3.7
Tia E. 1987. Modalités de la transmission du virus de la marbrure du niébé (Cowpea Mottle virus (CMeV)) en Côte d’Ivoire. Mémoire de DAA (Diplôme d’Agronomie Approfondie), ENSEA (Ecole Nationale Supérieure de Statistique et d’Economie Appliquée), Abidjan, p 53.
Traill LW, Lim MLM, Sodhi NS, Bradshaw C. 2010. Mechanisms driving change: altered species interactions and ecosystem function through global warming. Journal of Animal Ecology 79(5), 937-947. https://doi.org/10.1111/j.1365-2656.2010.01695.x
Tylianakis JM, Binzer A. 2014. Effects of global environmental changes on parasitoid–host food webs and biological control. Biological Control 75, 77-86. https://doi.org/10.1016/j.biocontrol.2013.10.003
Vongpa V, Amornsak W, Gordh G. 2016. Development, reproduction and longevity of Aprostocetus sp. (Hymenoptera: Eulophidae), an egg parasitoid of the Brown Planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), Agriculture and Natural Resources 50(4), 291-294. https://doi.org/10.1016/j.anres.2016.10.001
Weesie PDM, Belemsobgo U. 1997. Les rapaces diurnes du Ranch de gibier de Nazinga (Burkina Faso). Alauda 65, 263-278.
Yadav GR, Srivastava P, Mishra VK, Rajveer, Chauhan D. 2017. Diversity of insect fauna associated with cowpea crop ecosystem. Environment and Ecology 35(2), 630-637.
Zettler JA, Mateer SC, Link-Pérez MA, Bailey J, Demars G, Ness T. 2016. To Key or Not to Key: A New Key to Simplify and Improve the Accuracy of Insect Identification. The American Biology Teacher 78(8), 626-633. https://doi.org/10.1525/abt.2016.78.8.626
Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, 2025. Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin. J. Biodiv. Environ. Sci., 27(2), 21-34.
Copyright © 2025 by the Authors. This article is an open access article and distributed under the terms and conditions of the Creative Commons Attribution 4.0 (CC BY 4.0) license.