Essential role of microelements in pollen germination and pollen tube growth of Meistera muricarpa (Elmer) Škorničk. & MF Newman

Paper Details

Research Paper 01/10/2019
Views (435) Download (10)
current_issue_feature_image
publication_file

Essential role of microelements in pollen germination and pollen tube growth of Meistera muricarpa (Elmer) Škorničk. & MF Newman

Arturo G Gracia Jr, Florfe M Acma
Int. J. Biosci.15( 4), 454-461, October 2019.
Certificate: IJB 2019 [Generate Certificate]

Abstract

Determination of microelements essential for pollen viability is important for it serves as a key for successful germination and propagation of species, particularly for threatened species. Thus, this study was conducted to determine the microelements that are crucial to Meistera muricarpa’s pollen germination and tube growth. The pollen grains were subjected into five different treatments, namely: T1 (No KCl); T2 (No MgSO4); T3 (No H3BO3); T4 (No Ca(No3)2), and T5 (control). Afterward, a hanging-drop method was carried out; samples were then observed for pollen germination and tube growth for ten hours with one-hour interval. Results revealed that the highest average percentage of pollen germination (PPG) and the longest pollen tube growth (PTG) were observed on T4 (17%; 72μm), attained at the 8th hour of the observation; while the lowest average percentage of germination and PTG were observed on T3 (4%; 33μm) on the 9th hour. As for the statistical analysis, the PPG in T1 to T3 was noted to be significantly different from the control medium while the result in T4 shows the opposite. While for the PTG, the results on T2 to T4 were revealed to have a significant difference against the control medium. Results imply that the microelements Boron and Magnesium in a form of Boric acid and Magnesium Sulfate are the most important microelements for M. muricarpa’s pollen germination and pollen tube growth.

VIEWS 25

Acma FM, Mendez NP. 2018. Pollen morphology and pollen elemental composition of selected Philippine native gingers in tribe Alpinieae (Alpinioideae: Zingiberaceae). In Biological Forum 10(1), 1-10.

Acma FM. 2010. Biosystematics of the genus Amomum Roxb. (Family Zingiberaceae) in the Philippines. Doctor of Philosophy (Botany) Dissertation. University of the Philippines Los Baños.

Ali I. 2012. Standardization of different media for in vitro pollen germination of almond and evaluation of the germination capacity of stored pollen. African Journal of Biotechnology 11(36), 8843-8847. doi: 10.5897/AJB11.1561

Baker HB, Baker I. 1979. Starch in angiosperm pollen grains and its evolutionary significance. American Journal of Botany 66 (5), 591-600.

Barbosa GB, Peteros NP, Inutan ED. 2016. Antioxidant activities and phytochemical screening of Meistera muricarpa, Hornstedtia conoidea and Etlingera philippinensis. Bulletin of Environment, Pharmacology and Life Sciences 5(8), 22-32.

Bergmann W. 1992. Nutritional disorders of plants: visual and analytical diagnosis (English, French, Spanish).

Biswas P, Mondal S. 2014. Role of some nutrients on in vitro pollen germination and tube development of Luffa cylindrica (L.) Roem. Annals of Plant Sciences 3(09), 813-821.

Boavida LC, McCormick SM. 2007. Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. The Plant Journal 52, 570-582. doi: 10.1111/j.1365-313X.2007.03248.x

Bose J, Babourina O, Rengel Z. 2011. Role of magnesium in alleviation of aluminium toxicity in plants. Journal of Experimental Botany 62(7), 2251-2264. doi: 10.1093/jxb/erq456

Buyukkartal HN. 2003. In vitro pollen germination and pollen tube characteristics in tetraploid red clover (Trifolium pratense L.). Turkish Journal of Botany (27), 57-61.

Çetin E, Y›ld›r›m C, Palavan-Ünsal N, Ünal M. 2000. Effect of spermine and cyclohexylamine on in vitro pollen germination and tube growth in Helianthus annuus. Canadian Journal of Plant Science 80, 241-245. doi: 10.4141/P99-097

Chebli Y, Geitmann A. 2007. Mechanical principles governing pollen tube growth. Functional Plant Science Biotechnology 1, 232-245.

Dalisay JAG, Bangcaya PS, Naive MAK. 2018. Taxonomic Studies and Ethnomedicinal uses of Zingiberaceae in the Mountain Ranges of Northern Antique, Philippines. In Biological Forum – An International Journal 10, 68-73.

Dane F, Olgun G, Dalgiç Ö. 2004. In vitro pollen germination of some plant species in basic culture medium. Journal of Cell & Molecular Biology 3(2).

Imani AK, Bargezar S, Piripireivatlou HS, Masomi. 2011. Storage of apple pollen and in vitro germination. African Journal of Agricultural Research, Victoria Island 6, 624-629. doi: 10.5897/AJAR10.905

Kasinath BL, Ganeshmurthy AN, Sadashiva AT. 2014. Interaction effect of applied calcium and magnesium on alfisols of Karnataka and its influence on uptake and yield levels of tomato (Solanum lycopersium L.). Journal of Horticultural Science 9(2), 179-184.

Kavand A, Ebadi A, Shuraki YD, Abdosi V. 2014. Effect of calcium nitrate and boric acid on pollen germination of some date palm male cultivars. European Journal of Experimental Biology 4(3), 10-14.

Khan SA, Perveen ANJUM. 2006. Germination capacity of stored pollen of Abelmoschus esculentus L. (Malvaceae) and their maintenance. Pakistan Journal of Botany 38(2), 233.

Ma LG, Fan QS, Yu ZQ, Zhou HL, Zhang FZ, Sun DY. 2000. Does Aluminum inhibit pollen germination via extracellular calmodulin. Plant Cell Physiology 41(3), 372-376.

Mendez NP, Acma FM. 2018. In vitro Studies on Pollen Viability, Pollen Germination and Pollen Tube Growth of Hornstedtia conoidea Ridl.–a Philippine Endemic Ginger Species. Journal of Tropical Life Science 8(3). doi.org/10.11594/jtls.08.03.13

Mendez NP, Porquis HC, Sinamban EB, Acma FM. 2017. Comparative pollen viability and pollen tube growth of two endemic philippine Etlingera (Zingiberaceae, Alpinioideae). Philippine Journal of Systematic Biology 11(2), 1-9.

Moctezuma E. 2008. Manual for Plant Biology Lab (U. Maryland, College Park).http:// www. howardbiolab. com/upload/1611_documentfile.pdf

Moore PN, Jung WL. 1974. Studies in sugarcane pollen. I. In vitro germination of pollen. Phyton, International Journal of Experimental Botany 32(2), 147-158.

Naïve MAK. 2017. Zingiberaceae of Kalatungan Mountain Range, Bukidnon, Philippines. Bioscience Discovery 8(3), 311-319.

Obermeyer G, Blatt MR. 1995. Electrical properties of intact pollen grains of Lilium longiflorum: characteristics of the non-germinating pollen grain. Journal of Experimental Botany 46(7), 803-813.

Ottavio E, Mulahy D, Sari Goria M, Mulahy GB. 1992. Angiosperm Pollen and Ovules, Springer-Veriag,

Patel RG, Mankad AU. 2012. In Vitro Pollen Germination-A Review. International Journal of Science and Research 3.5 (2014), 304-307.

Pelser PB, Barcelona JF, Nickrent DL. 2011. onwards. Co’s Digital Flora of the Philippines www.philippineplants.org

Rerkasem B, Jamjod S. 2004. Boron deficiency in wheat: a review. Field Crops Research 89(2-3), 173-186. doi: 10.1016/j.fcr.2004.01.022

Sinha MK. 2013. Threat Assessment of Medicinal Plants of Koria District In Chhattisgarh (India). IOSR Journal of Pharmacy and Biological Sciences 5, 79-86.

Taylor LP, Hepler PK. 1997. Pollen germination and tube growth. Annual Review of Plant Physiology and Plant Mol Biol 48, 461-491.

Vasil IK. 1960. Studies on pollen germination of certain Cucurbitaceae. American Journal of Botany 47(4), 239-248.

Waki T, Horita M, Kurose D, Mulya K, Tsuchiya K. 2013. Genetic diversity of Zingiberaceae plant isolates of Ralstonia solanacearum in the Asia-Pacific region. Japan Agricultural Research Quarterly 47, 283-94.

Wang Q, Lu L, Wu X, Li Y, Lin J. 2003. Boron influences pollen germination and pollen tube growth in Picea meyeri. Tree Physiology 23(5), 345-351. doi: 10.1093/treephys/23.5.345.