Estimation of Age and Growth Rate of Pinus gerardiana Forest Trees, Wildly Grown in Shinghar Zhob Area Balochistan-Pakistan by Using Dendro-chronological Approach

Paper Details

Research Paper 01/02/2020
Views (825)
current_issue_feature_image
publication_file

Estimation of Age and Growth Rate of Pinus gerardiana Forest Trees, Wildly Grown in Shinghar Zhob Area Balochistan-Pakistan by Using Dendro-chronological Approach

Qulam Khan Safi, Atta Muhammed Sarangzai, Saadullah Khan Leghari, Kanval Shaukat
Int. J. Biosci. 16(2), 436-443, February 2020.
Copyright Statement: Copyright 2020; The Author(s).
License: CC BY-NC 4.0

Abstract

The aim of study was to determine the age and growth rate of Pinus gererdiana trees which are wildly grown in Shinghar Zhob Area of Balochistan-Pakistan through different Dendro-chronological Approach. Wood samples in the form of cross-sections and cores were obtained from 40 living Pinus gerardiana trees to determine their age, growth rates and ring width characteristics from all sites of the study area. Results showed that the age and growth rates varied greatly from tree to tree and site to site and even in the same sized trees. Rings of this species were annual nature with distinct and clear ring boundaries. Cross dating was not achieved only in young trees in while old trees were mostly rotten in the centre and showed poor matching. The presence of false rings, missing rings, wedge out, lack of ring pattern consistency and lobate growth around the tree was observed in Pinus gerardiana. The result indicated that at least 4 cores, a suitable site-selection and sample of tree rings in the form of trunks section may improve ring with characteristics and can successfully be used in dendrochronological studies. It is shown that largest tree, in terms of diameter, is not necessarily the oldest. Highest growth rate in Pinus gerardiana in years/cm and cm/year was recorded at locations Zarjangal and Branga while the lowest was found from the Marmanda Ghar and three other sites also.

Agren J, Zackrisson O. 1990. Age and size structure of Pinus sylvestris populations on mires in central and northern Sweden Journal of Ecology 78, 1049-1062.

Ahmed M. 1989. Tree-ring chronologies of Abies pindrow (Royel) Spach, from Himalayan region of Pakistan. Pakistan Journal of Botany 21, 347-354.

Ahmed M, Sarangezai AT. 1991. Dendrochronological approach to estimate age and growth rate of various species from Himalayan region of Pakistan. Pakistan Journal of Botany 23, 78-79.

Ahmed M, Wahab M, Khan N, Siddiqui MF, Khan MU, Hussain ST. 2009. Age and growth rates of some Gymnosperms of Pakistan: A dendrochronological approach. Pakistan Journal of Botany 41, 849-860.

Castagneri D, Storaunet KO, Rolstad J. 2013. Age andgrowth patterns of old Norway spruce trees in Trillemarka forest, Norway. Science Journal for Research 28, 232-240.

Cook ER, Kairiukstis LA. 2010. Methods of Dendrochronology: Applications in the environmental sciences. Kluwer Academic Publishers, AA Dordrecht, the Netherland, p 249,

Cook ER, Krusic PJ, Jones PD. 2003. Dendroclimatic signals in long tree-ring chronologies from the Himalayas of Nepal. International Journal of Climatology 23, 707–732.

Currie DJ. 1991. Energy and large scale patterns of animal and plant species richness. The American Naturalist 137, 27-49.

Fricker JM, Chen HYH, Wang JR. 2006. Stand age structural dynamics of North American boreal forests and implication for forest management. Atypon 8, 395-405.

Hussain A, Ahmed M, Khan SW, Abbas H, Hussain A, Abbas Q. 2018. Agroforestry practices in relation to the age and growth rate patterns of Picea smithiana using modern techniques of dendrochronology from Istak valley of central Karakoram National park (CKNP) Gilgit-Baltistan, Pakistan. Pakistan Journal of Agrictural Science 55, 569-574.

Iqbal J, Ahmed M, Siddiqui MF, Khan A, Wahab M. 2017. Age and Radial growth analysis of Conifer tree species from Shangla, Pakistan. Pakistan Journal of Botany 49, 69-72.

Khan A, Ahmed M, Siddiqui MF, Iqbal J, Gaire NP. 2018. Dendrochronological potential of Abies pindrow royle from Indus Kohistan, Khyber Pakhtunkhwa (kpk) Pakistan. Pakistan journal of botany 50, 365-369.

Lafon CW, Speer JH. 2002. Using dendrochronology to identify major ice storm events in oak forests of southwestern Virginia, Climate Research 20, 41-54.

Lanner RM. 2002.Why do trees live so long? Age. Research Rev 1(53), 67.

Rentch, JS, Fajvan MA, Hicks RRJR. 2003. Oak establishment and canopy accession strategies in five oldgrowth stands in the central hardwood forest region. For. Ecology and Management 184, 285-297.

Sarangzai AM, Ahmed A. 2011. Dendrochronological potential of Juniperus excelsa (M.Bieb) from dry temperate forest of Balochistan province, Pakistan. FUUAST Journal of Biology 1, 65-70.

Schweingbruber FH. 1998. Tree Rings: Basics and Applications of Dendrochronology. D. Reidel, Dordrecht, the Netherlands 276, p.

Siddiqui MF, Shaukat SH., Ahmed M, Khan N, Khan IA. 2013. Age and growth rates of dominant conifers from moist temperate areas of Himalayan and Hindukush region of Pakistan. Pakistan journal of botany 45, 1135-1147.

Wils THG, Eshetu Z. 2007. Reconstructing the flow of the River Nile from Juniperus procera and Prunus africana tree rings (Ethiopia) an explorative study on cross-dating and climate signal TRACE 5, 277-284.

Worrell R, Malcolm DC. 1990. Productivity of Sitka spruce in Northern Britain. 1. The effects of elevation and climate. Forestry 63, 105-118.

Zafar MU, Ahmed M. 2014. The status of tree-ring analysis in Pakistan. FUUAST journal of. Biology 4, 13-19.

Related Articles

Characteristics of symbiotic relationships between plants and bacteria and the influence of stress factors on them

Konul F. Bakhshaliyeva, Navai D. İmamquliyev, Mehpara İ. Gasımova, Sevda M. Muradova, Panah Z. Muradov*, Int. J. Biosci. 28(2), 75-90, February 2026.

In the line of fire: Unmasking the institutional challenges in the bureau of fire protection

Mhelen Grace F. Libre, Nancy E. Aranjuez*, Int. J. Biosci. 28(2), 53-74, February 2026.

One health approch: Diversity of domestic larval habitats and human responsibility in mosquito proliferation in Bobo-Dioulasso (Burkina Faso)

Zouéra Laouali, Kouamé Wilfred Ulrich Kouadio, Moussa Namountougou*, Int. J. Biosci. 28(2), 38-52, February 2026.

Linkages between land use change, flooding, and water quality in the Pallikaranai Marshland, Chennai, India

Arunpandiyan Murugesan, Roshy Ann Mathews, Aarthi Mariappan, J. Ranjansri, Rajakumar Sundaram, Prashanthi Devi Marimuthu*, Int. J. Biosci. 28(2), 28-37, February 2026.

Nutritional and phytochemical characteristics of Garcinia afzelii fruit

Doumbia Fanta*, Dje Kouakou Martin, Kone Daouda, Silue Sana Etienne, Kouame Lucien Patrice , Int. J. Biosci. 28(2), 17-27, February 2026.

Sensory evaluation of horn snail (Telescopium telescopium) patty

Ma. Isabel P. Lanzaderas, Gilbert P. Panimdim, Proceso C. Valleser Jr.*, Int. J. Biosci. 28(2), 7-16, February 2026.

Two years evolution of deltamethrin, malathion and pirimiphos-methyl resistance in Aedes aegypti from urban in peri urban sites of Ouagadougou, Burkina Faso

Hyacinthe K. Toe*, Moussa W. Guelbeogo, Soumananaba Zongo, Aboubacar Sombie, Athanase Badolo, Int. J. Biosci. 28(2), 1-6, February 2026.

Physicochemical characterization of annatto seeds (Bixa orellana) sold in Ouagadougou and their oils extracted using chemical processes

Mah Alima Esther Traoré*, Adama Lodoun, Pingdwindé Marie Judith Samadoulougou-Kafando, Nestor Beker Dembélé, Kiswendsida Sandrine Léticia Dayamba, Charles Parkouda, Int. J. Biosci. 28(1), 169-178, January 2026.