Evaluation of antibacterial activity of three flower colours Chrysanthemum morifolium Ramat. against multi-drug resistant human pathogenic bacteria

Paper Details

Research Paper 01/08/2016
Views (839)
current_issue_feature_image
publication_file

Evaluation of antibacterial activity of three flower colours Chrysanthemum morifolium Ramat. against multi-drug resistant human pathogenic bacteria

Dilruba Yeasmin, Rawnak Jahan Swarna, Mst. Samima Nasrin, Sarwar Parvez, Mohammad Firoz Alam
Int. J. Biosci. 9(2), 78-87, August 2016.
Copyright Statement: Copyright 2016; The Author(s).
License: CC BY-NC 4.0

Abstract

The present investigation was carried out to evaluate the anitibacterial activity of flower extracts of three colours (pink, yellow and white) of Chrysanthemum morifolium Ramat. against five Gram positive bacteria viz., Staphylococcus aureus, Bacillus cereus, Streptococcus-β-haemolytica, Bacillus subtilis, Sarcina lutea and five Gram negative bacteria viz., Klebsiella sp, Klebsiella pneumonia, Pseudomonas aeruginosa, Salmonella typhi, Shigella dysenteriae. Between the two extracts (ethanol and methanol) the ethanol extracts of white flower was more effective than pink and yellow flower of C. morifolium. The ethanol extracts of white flower was showed the highest zone of inhibition (24.40 mm) against Shigella dysenteriae, the lowest MIC value (150 mg/ml) was against Shigella dysenteriae and Streptococcus-β-haemolytica and the lowest MBC value (200 mg/ml) was against Shigella dysenteriae. MIC and MBC of the extracts have ranged from 150-250 mg/ml and 200-300 mg/ml respectively. The lowest MIC and MBC values have observed against Shigella dysenteriae. For pink and yellow flower extracts, statistical results indicated that there are significant differences among bacterial species, solvent and bacterial strain, but no significant differences are shown in replication. But in case of yellow flower, there are significant differences among bacterial species, solvent, replication and bacterial strain. In addition, interaction between bacterial species and solvent appears to be significantly different.

Afolayan AJ, Meyer JJM. 1995. Antibacterial activity of Helichrysum aureonitens. Journal of Ethnopharmacology 47, 109-111.

Akueshi CO, Kadiri CO, Akueshi EU, Agina SE, Ngurukwem B. 2002. Antimicrobial potentials of Hyptis sauvedens Poit (Lamiaceae). Nigerian Journal of Botany 15, 37-41.

Bansod S, Rai M. 2008. Antifungal activity of essential oils from Indian medicinal plants against human pathogenic Aspergillus fumigatus and A. niger. World Journal of Medical Sciences 3(2), 81-88.

Barry AL. 1980. Procedure for testing antimicrobial agent in agar media. In; Lorian V (ed) Antibiotica in laboratory medicines, Williams and Wilkins Co. Baitimore, USA. 1-23.

Bauer AW, Kirby WMM, Sherris JC, Turck M. 1966. Antibiotic susceptibility testing by a standardized single disc method. The American Journal of Pathology 49, 493-496.

de Boer HJ, Kool A, Broberg A, Mziray WR, Hedberg I, Levenfors JJ. 2005. Antifungal and antibacterial activity of some herbal remedies from Tanzania. Journal of Ethnopharmacology 96, 461-469.

Deininger R. Lectures of the Medical Congress. Berlin: Firma Klosterfrau, Koln. 1984. Neves aus der Terpenf or schung. Excerpta phytotherapeutika. 24–31.

Doughari JH, Elmahmood AM, Manzaras. 2007. Studies on the antibacterial activity of root extracts of Carica papaya L. African Journal of Microbiology Research. 037-041.

Ekwenye UN, Elegalam NN. 2005. Antibacterial activity of Ginger (Zingiber officinale) Roscoe and Garlic (Allium sativum L.) extracts on Escherichia coli and Salmonella typhi. International Journal of Molecular Medicine and Advance Sciences 1(4), 411-416.

Fazly-Bazzaz BS, Khajehkaramadin M and Shokooheiza-deh HR. 2005. In vitro antibacterial activity of Rheum ribes extract obtained from various plant parts against clinical isolates of Gram-negative pathogens. Iranian Journal of Pharmaceutical Research 2, 87-91.

Kaushik P, Goyel P. 2008. In vitro evaluation of Datura innoxia (thorn-apple) for potential antibacterial activity. Indian Journal of Microbiology 48(3), 353- 357.

Kuhnt M, Probestle A, Rimpler H, Bauer R, Hei M. 1994. Biological and pharmacological activities and further constituents of Hyptis verticillata. Planta Medica 61, 227-232.

Kumar H.N.K, Chandana E, Preethi SD. 2012. Invitro antimicrobial activity and phytochemical screening of Aloe vera Linn., International Journal of Current Pharmaceutical Research 4(3), 45–47.

Lograda T, Ramdani M, Chalard P,Figueredo G, Silini H, Kenoufi M. 2013. Chemical composition, antibacterial activity and chromosome number of Algerian populations of two chrysanthemum species. Journal of Applied Pharmaceutical Science 3, S6-S11.

Nagesh KS, Shanthamma C. 2009. Antibacterial activity of Curculigo orchioides rhizome extract on pathogenic bacteria, African Journal of Microbiology Research 3(1), 5–9.

Oladipupo AL, Isiaka AO, Olusola FO, Andy RO. 2014. The essential oils of Chrysanthemum morifolium Ramat. from Nigeria. American Journal of Essential Oils and Natural Products 2(1), 63-66.

Ragasa CY, Tiu F Rideout J. 2005. Triterpenoids from Chrysanthemum morifolium. ACGC chemical research communications 18(1), 11–17.

Sandigawad AM. 2010. Invitro evaluation of antibacterial activity of bark and flower extracts of Pimenta officinalis Lindi. ADVANCES IN BIORESEARCH 1(2), 61–68.

Toppo IK, Gupta, Shubha, Karkun, Kumar D, Anil. 2015. Study of antimicrobial effect of Chrysanthemum morifolium ramat. (asteraceae) against some human pathogens. International Journal of Pharmacy and Biological Sciences 9(2), 179-188.

Yao J, Moellering R. 1995. Antibacterial agents In: Manual of Clinical M microbiology, Murray P, Baron E, Pfaller M, Tenover F, Yolken R (Eds), ASM, Washington DC.  281-1290.

Related Articles

Sensory acceptability of gnocchi pasta added with different levels of malunggay (Moringa oleifera) leaves and blue ternate (Clitoria ternatea) flowers

Ralph Justyne B. Bague, James Troyo, Proceso C. Valleser Jr.*, Int. J. Biosci. 28(1), 103-114, January 2026.

Spatio-temporal analysis of vegetation cover and socio-environmental implications in Korhogo (Northern Côte d’Ivoire) from 1990-2020

Adechina Olayossimi*, Konan Kouassi Urbain, Ouattara Amidou, Yao-Kouamé Albert, Int. J. Biosci. 28(1), 94-102, January 2026.

Predicting the habitat suitability of Vitellaria paradoxa under climate change scenarios

Franck Placide Junior Pagny*, Anthelme Gnagbo, Dofoungo Kone, Blaise Kabré, Marie-Solange Tiébré, Int. J. Biosci. 28(1), 73-83, January 2026.

Performance response dynamics of rabbits (Oryctolagus cuniculus) to locally sourced, on-farm feed ingredients during the growing phase: Implications for the institutional rabbit multiplier project

Roel T. Calagui*, Janelle G. Cadiguin, Maricel F. Campańano, Jhaysel G. Rumbaoa, Louis Voltaire A. Pagalilauan, Mary Ann M. Santos, Int. J. Biosci. 28(1), 65-72, January 2026.

Chronopharmacology: Integration of circadian biology in modern pharmacotherapy

Sangram D. Chikane*, Vishal S. Adak, Shrikant R. Borate, Rajkumar V. Shete, Deepak V. Fajage, Int. J. Biosci. 28(1), 56-64, January 2026.

Evaluation of the impact of floristic diversity on the productivity of cocoa-based agroforestry systems in the new cocoa production area: The case of the Biankouma department (Western Côte d’Ivoire)

N'gouran Kobenan Pierre, Zanh Golou Gizele*, Kouadio Kayeli Anaïs Laurence, Kouakou Akoua Tamia Madeleine, N'gou Kessi Abel, Barima Yao Sadaiou Sabas, Int. J. Biosci. 28(1), 44-55, January 2026.

Utilization of locally sourced feed ingredients and their influence on the growth performance of broiler chickens (Gallus gallus domesticus): A study in support of the school’s chicken multiplier project

Roel T. Calagui*, Maricel F. Campańano, Joe Hmer Kyle T. Acorda, Louis Voltaire A. Pagalilauan, Mary Ann M. Santos, Jojo D. Cauilan, John Michael U. Tabil, Int. J. Biosci. 28(1), 35-43, January 2026.