Evaluation of phytoremediation potential of Moringa oleifera and Moringa stenopetala when grown in polluted soil with and without coal fly ash

Paper Details

Research Paper 01/04/2020
Views (379) Download (17)

Evaluation of phytoremediation potential of Moringa oleifera and Moringa stenopetala when grown in polluted soil with and without coal fly ash

Raviro Vurayai, Baleseng Moseki, Bonang Nkoane, Padmaja Chaturvedi
Int. J. Biosci.16( 4), 136-151, April 2020.
Certificate: IJB 2020 [Generate Certificate]


Phytoremediation potential of Moringa oleifera and Moringa stenopetala on polluted lands of east and west of Bamangwato Concessions Limited Cu/Ni mine smelter, Selebi-Phikwe, Botswana was evaluated. Plants were raised in greenhouse (pots) in soils collected 2.5 km east, 2.5 km west, 20 km west, and 55 km west (control) of the mine smelter, which were supplemented with and without coal fly ash. Without ash, both species did not survive in soils collected 2.5 and 20 km west. In soils from 2.5 km east, soil acidity and heavy metal stress reduced vegetative growth and total dry weight. Both species accumulated more metals in roots than in shoots, and failed to hyperaccumulate any metal. In soils collected 2.5 and 20 km west, coal fly ash enabled plants to survive, reduced accumulation of majority of heavy metals and increased vegetative growth and total dry weight. Heavy metal accumulation, translocation and bioaccumulation factors of plants grown in soils with ash generally followed the order 55 km west> 2.5 km east> 20 km west> 2.5 km west. Moringa oleifera and Moringa stenopetala are not good candidates for phytoextraction of heavy metals east and west of mine smelter, but have a potential for phytostabilisation with the help of coal fly ash.


Agarwal PK, Agarwal P, Reddy MK, Sopory SK. 2006. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports 5(12), 1263-1274. http://dx.doi.org/10.1007/s00299-006-0204-8

Amadi N, Tanee FBG. 2014. Efficacy of Moringa oleifera as a phytoextraction plant in the remediation of heavy metals polluted soil. African Journal Plant Science 8(12), 546-553. http://dx.doi.org/10.5897/AJPS

Baker AJM. 1981. Accumulators and excluders‐strategies in the response of plants to heavy metals. Journal of Plant Nutrition 3(1-4), 643-654. http://dx.doi.org/10.1080/01904168109362867

Baker AJM, McGrath SP, Sidoli CMD, Reeves RD. 1994. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resource Conservation and Recycling 11(1-4), 41-49. http://dx.doi.org/10.1016/0921-3449(94)90077-9.

Baker AJM, Brooks RR. 1989. Terrestrial higher plants which hyperaccumulate metallic elements -A review of their distribution, ecology and phytochemistry. Biorecovery 1, 81-126. http://dx.doi.org/10.1080/01904168109362867.

Barrie CT, Ludden JN, Green TH. 1993. Geochemistry of volcanic rocks associated with Cu-Zn and Ni-Cu deposits in the Abitibi Subprovince. Economic Geology 88(6), 1341-1358. http://dx.doi.org/10.2113/gsecongeo.88.6.1341

Bolan NS, Duraisamy VP. 2003. Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: a review involving specific case studies. Soil Research 41(3), 533-555. http://dx.doi.org/10.1071/SR02122.

Bosch CH. 2004. Moringa oleifera Lam. PROTA Foundation (pp392-395). Backhuys, Wageningen, the Netherlands.

Cardwell AJ, Hawker DW, Greenway M. 2002. Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere   48(7), 653-663. PMID: 12201195 http://dx.doi.org/10.1016/s0045-6535(02)00164-9.

Chaney RL. 1983. Plant uptake of inorganic waste constituents. In: JF Parr, Marsh PB, Kla JM, Ed. Land Treatment of Hazardous Wastes.  New Jersey, USA: Noyes Data Corp., p. 50-76.

Chatterjee J, Chatterjee C. 2000. Phytotoxicity of cobalt, chromium and copper in cauliflower. Environmental Pollution 109(1), 69-74. PMID: 15092914. http://dx.doi.org/10.1016/s0269-7491(99)00238-9.

Danh LT, Truong P, Mammucari R, Tran T, Foster N. 2009. Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. International Journal of Phytoremediation 11(8), 664-691. http://dx.doi.org/10.1080/15226510902787302.

Ebbs SD, Kochian LV. 1997. Toxicity of zinc and copper to Brassica species: implications for phytoremediation. Journal Environmental Quality 26 (3), 776-781. http://dx.doi.org/10.2134/jeq1997.00472425002600030026x.

Ebbs SD, Kochian LV. 1998. Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea). Environmental Science and Technology 32(6), 802-806. http://dx.doi.org/10.1021/es970698p.

Ekosse GIE, Ngila CJ, Forcheh N. 2005. Multivariate analyses of heavy metals in soils and Colophospermum mopane leaves around the Selebi Phikwe nickel-copper mine and smelter/concentrator plant area, Botswana. Journal of Applied Science and Environmental Management 9(1), 177–185.

Ekosse G, Van den Heever DJ, De Jager L, Totolo O. 2004. Environmental chemistry and mineralogy of particulate air matter around Selebi Phikwe nickel–copper plant, Botswana. Mineral Engineering 17(2), 349-353. http://dx.doi.org/10.1016/j.mineng.2003.08.016.

Ekosse G, Van Den Heever D, De Jager L, Totolo O. 2003. Environmental mineralogy of soils around Selebi Phikwe nickel-copper plant, Botswana. International Journal of Environmental Studies 60 (3), 251-262. http://dx.doi.org/10.1080/00207230290034332

Ekosse GIE, Ngole VM. 2012. Copper, nickel and zinc contamination in soils within the precincts of mining and landfilling environments. International Journal of Environmental Science and Technology 9(3), 485-494. http://dx.doi.org/10.1007/s13762-012-0055-5.

Erakhrumen A, Agbontalor A. 2007. Review Phytoremediation: an environmentally sound technology for pollution prevention, control and remediation in developing countries. Educational Research and Review 2(7), 151-156.

Erdei L, Mezˆ osi G, M´ecs I, Vass I, Fˆoglein F, Bulik L. 2005. Phytoremediation as a program for decontamination of heavy-metal polluted environment. Acta Biologica Szegediensis 49(1-2), 75-76.

González V, García I, Del Moral F, Simón M. 2012. Effectiveness of amendments on the spread and phytotoxicity of contaminants in metal–arsenic polluted soil. Journal of hazardous materials 205, 72-80. http://dx.doi.org/10.1016/j.jhazmat.2011.12.011.

Hoagland DR, Arnon DI. 1950. The Water-Culture Method for Growing Plants without Soil. California Agricultural Experiment Station, Circular-347.

Jala S, Goyal D. 2006. Fly ash as a soil ameliorant for improving crop production-a review.  Bioresource Technology  97(9), 1136-1147. http://dx.doi.org/10.1016/j.biortech.2004.09.004

Jiru D, Sonder K, Alemayehu L, Mekonen Y, Anjulo A. 2006. Leaf yield and nutritive value of Moringa stenopetala and Moringa oleifera accessions: Its potential role in food security in constrained dry farming agroforestry system. Proceedings of the Moringa and Other Highly Nutritious Plant Resources: Strategies, Standards and Markets for a Better Impact on Nutrition in Africa, Accra, Ghana, 16-18.

Khan MR, Wajid M. 1996. The effect of fly ash on plant growth and yield of tomato. Environmental Pollution 92(2), 105-111. http://dx.doi.org/10.1016/0269-7491(95)00098-4.

Khan S, Wang N, Reid BJ, Freddo A, Cai C. 2013. Reduced bioaccumulation of PAHs by Lactuca satuva L. grown in contaminated soil amended with sewage sludge and sewage sludge derived biochar. Environmental pollution 175, 64-68. http://dx.doi.org/10.1016/j.envpol.2012.12.014.

Kumpiene J, Lagerkvist A, Maurice C. 2008. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments–a review. Waste management 28(1), 215-225. http://dx.doi.org/10.1016/j.wasman.2006.12.012.

Likuku AS, Mmolawa KB, Gaboutloeloe GK. 2013. Assessment of heavy metal enrichment and degree of contamination around the copper-nickel mine in the Selebi Phikwe Region, Eastern Botswana. Environment and Ecology Research 1(2), 32-40.

Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley  ED. 2001. A fern that hyperaccumulates arsenic. Nature 409(6820), 579-579. http://dx.doi.org/10.1038/35054664.

Mataka LM, Henry EMT, Masamba WRL, Sajidu SM. 2006. Lead remediation of contaminated water using Moringa Stenopetala and Moringa oleifera seed powder. International Journal of Environmental Science and Technology 3(2), 131-139. http://dx.doi.org/10.1007/bf03325916.

Mataka LM, Sajidu SM, Masamba WRL, Mwatseteza JF. 2010.   Cadmium sorption by Moringa stenopetala   and Moringa oleiferaseed powders:  Batch, time, temperature, PH and adsorption isotherm studies. International Journal of Water Resources and Environmental, Engineering 2(3), 50-59.

Mench M, Bussiere S, Boisson J, Castaing E, Vangronsveld J, Ruttens A, Manceau A. 2003. Progress in remediation and revegetation of the barren Jales gold mine spoil after in situ treatments. Plant and soil 249(1), 187-202. http://dx.doi.org/10.1023/a:1022566431272.

Mench M, Manceau A, Vangronsveld J, Clijsters, H, Mocquot B. 2000. Capacity of soil amendments in lowering the phytoavailability of sludge-borne zinc. Agronomie 20(4), 383-397. http://dx.doi.org/10.1051/agro:2000135.

Mitra BN, Karmakar S, Swain DK, Ghosh BC. 2005. Fly ash-a potential sourceof soil amendment and a component of integrated plant nutrient supplysystem. Fuel 84, 1447–1451. http://dx.doi.org/10.1016/j.fuel.2004.10.019.

Nand V, Maata M, Koshy K, Sotheeswaran S. 2012. Water purification using Moringa oleifera and other locally available seeds in Fiji for heavy metal removal. International Journal of Applied Science and Technology 2(5).

Offor I, Ehiri R, Njoku C. 2014. Proximate nutritional analysis and heavy metal composition of dried Moringa oleifera leaves from Oshiri Onicha LGA, Ebonyi State, Nigeria. Journal of Environmental Science, Toxicology and Food Technology 8(1), 57-62. http://dx.doi.org/10.9790/2402-08115762.

Pessarakli M. 1999. Handbook of plant and crop stress 2nded. New York, USA: Marcel Dekker Inc., p 720.

Pivetz BE. 2001. Ground water issue: phytoremediation of contaminated soil and ground water at hazardous waste sites. National risk management research lab ADA OK, p 37.

Polat M, Lederman E, Pelly I, Cohen H. 2002. Chemical neutralization of acidic wastes using fly ash in Israel. Journal of Chemical Technology and Biotechnology 77(3), 377-381. http://dx.doi.org/10.9790/2402-08115762.

Prasad MNV, Freitas HMO. 2003. Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology 6(3), 285-321. http://dx.doi.org/10.2225/vol6-issue3-fulltext-6.

Rai V, Vajpayee P, Singh SN, Mehrotra S. 2004. Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant science 167(5), 1159-1169. http://dx.doi.org/10.1016/j.plantsci.2004.06.016.

Rosenthal WD, Arkin GF, Shouse PE, Jordan WR. 1987. Water deficit effects on transpiration and leaf growth. Agronomy Journal 79(6), 1019-1026. http://dx.doi.org/10.2134/agronj1987.00021962007900060014x.

Roy S, Labelle S, Mehta P, Mihoc A, Fortin N, Masson C, Olsen C. 2005. Phytoremediation of heavy metal and PAH-contaminated brownfield sites. Plant and Soil 272(1), 277-290. http://dx.doi.org/10.1007/s11104-004-5295-9.

Sajidu SM, Henry EMT, Kwamdera G, Mataka L. 2005. Removal of lead, iron and cadmium ions by means of polyelectrolytes of the Moringa oleifera whole seed kernel. WIT Transactions on Ecology and the Environment, 80.

Schippers A, Kock D, Schwartz M, Bo¨ttcher ME, Vogel H, Hagger M. 2007. Geomicrobiological and geochemical investigation of a pyrrhotite-containing mine waste tailings dam near Selebi Phikwe in Botswana. Journal of Geochem Exploration 92(2–3), 151–158. http://dx.doi.org/10.1016/j.gexplo.2006.08.003.

Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Sabir M. 2015. Heavy metal stress and crop productivity. In: Hakeem KR, Ed. Crop Production and Global Environmental Issues.Cham: Springer International Publishing, p 1–25.

Su DC, Wong JWC. 2004. Chemical speciation and phytoavailability of Zn, Cu, Ni and Cd in soil amended with fly ash-stabilized sewage sludge. Environment International 29(7), 895-900. http://dx.doi.org/10.1016/s0160-4120(03)00052-7.

Tsang DC, Yip AC, Olds WE, Weber PA. 2014. Arsenic and copper stabilisation in a contaminated soil by coal fly ash and green waste compost. Environmental Science and Pollution Research 21(17), 10194-10204. http://dx.doi.org/10.1007/s11356-014-3032-3.

Vurayai R, Nkoane B, Moseki B, Chartuvedi P. 2015. Assessment of heavy metal pollution/contamination in soils east and west of the Bamangwato Concessions Ltd (BCL) Cu/Ni mine smelter in Selebi-Phikwe, Botswana. Journal of Biodiversity and Environmental Science 7(6), 111-120.

Vurayai R, Nkoane B, Moseki B, Chartuvedi P. 2017.  Phytoremediation potential of Jatropha curcas and Pennisetum clandestinum grown in polluted soil with and without coal fly ash: a case of BCL Cu/Ni mine, Selibe-Phikwe, Botswana. Journal of Biodiversity and Environmental Science 10(5), 193-206.

Yimer AM, Khan MA. 2016. Atomic Absorption Spectrometric Determination of Some Heavy Metals from the Leaves of Moringa stenopetala Grown in Gamo Gofa Zone, Ethiopia. British Journal of Applied Science and Technology 13, 5. http://dx.doi.org/10.9734/bjast/2016/17726.

Yu XZ, Gu JD, Huang SZ. 2007. Hexavalent chromium induced stress and metabolic responses in hybrid willows. Ecotoxicology 16(3), 299-309. http://dx.doi.org/10.1007/s10646-006-0129-6.

Yunusa IA, Burchett MD, Manoharan V, DeSilva DL, Eamus D, Skilbeck CG. 2009. Photosynthetic pigment concentrations, gas exchange and vegetative growth for selected monocots and dicots treated with two contrasting coal fly ashes. Journal of environmental quality 38(4), 1466-1472. http://dx.doi.org/10.2134/jeq2008.0285.