Exogenous salicylic acid stimulates secondary metabolites production in red beet

Paper Details

Research Paper 01/04/2022
Views (473) Download (58)
current_issue_feature_image
publication_file

Exogenous salicylic acid stimulates secondary metabolites production in red beet

Sandip Palve, Digambar Ahire
J. Bio. Env. Sci.20( 4), 11-17, April 2022.
Certificate: JBES 2022 [Generate Certificate]

Abstract

In the last few years, increasing interest in the foliar application of salicylic acid (plant hormone) on plants has considerably expanded our knowledge concerning its effects on plants’ metabolism in stresses such as freezing, drought, disease, insect attack, and nutrient deficiencies. To investigate the effects of salicylic acid (SA) on secondary metabolites (like betanin and vulgaxanthin, total phenol content, anthocyanin, and alkaloids). in beet (Beta vulgaris L.), the plants were sprayed with 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, and 3.2mM of salicylic acid concentrations along with a control. Dark red variety of beet were used in the experiment. Based on preliminary findings and discussion, foliar application of salicylic acid may enhance betanin, vulgaxanthin, total phenol content at 0.8mM, and anthocyanin and alkaloids at 1.2mM.

VIEWS 78

Adham AN. 2015. Comparative extraction methods, phytochemical constituents, fluorescence analysis and HPLC validation of rosmarinic acid content in Mentha piperita, Mentha longifolia and Osimum basilicum. Journal of Pharmacognosy and Phytochemistry 3(6), 130-139.

Ali B. 2020. Salicylic acid: An efficient elicitor of secondary metabolite production in plants. Biocatalysis and Agricultural Biotechnology, 101884.

Asghari M, Aghdam MS. 2010. Impact of salicylic acid on post-harvest physiology of horticultural crops. Trends in Food Science & Technology 21(10), 502-509.

Baião DDS, da Silva DV, Del Aguila EM, Paschoalin VMF. 2017. Nutritional, bioactive and physicochemical characteristics of different beetroot formulations. Food additives 6(6).

Boonsnongcheep P, Korsangruang S, Soonthornchareonnon N, Chintapakorn Y, Saralamp P, Prathanturarug S. 2010. Growth and isoflavonoid accumulation of Pueraria candollei var. candollei and P. candollei var. mirifica cell suspension cultures. Plant Cell, Tissue and Organ Culture (PCTOC) 101(2), 119-126.

Chaichana N, Dheeranupattana S. 2012. Effects of methyl jasmonate and salicylic acid on alkaloid production from in vitro culture of Stemona sp. International Journal of Bioscience, Biochemistry and Bioinformatics 2(3), 146.

Chaman ME, Copaja SV, Argandoña VH. 2003. Relationships between salicylic acid content, phenylalanine ammonia-lyase (PAL) activity, and resistance of barley to aphid infestation. Journal of Agricultural and Food Chemistry 51(8), 2227-2231.

Deng W, Fang X, Wu J. 1997. Flavonoids function as antioxidants: by scavenging reactive oxygen species or by chelating iron? Radiation Physics and Chemistry 50(3), 271-276.

Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K. 2006. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current opinion in plant biology 9(4), 436-442.

Ghasemzadeh A, Jaafar HZ, Karimi E. 2012. Involvement of salicylic acid on antioxidant and anticancer properties, anthocyanin production and chalcone synthase activity in ginger (Zingiber officinale Roscoe) varieties. International journal of molecular sciences 13(11), 14828–14844. https:// doi.org /10.3390/ijms131114828

Ghassemi-Golezani K, Hassanzadeh N, Shakiba MR, Esmaeilpour B. 2020. Exogenous salicylic acid and 24-epi-brassinolide improve antioxidant capacity and secondary metabolites of Brassica nigra. Biocatalysis and Agricultural Biotechnology 26, 101636.

Gorni PH, Pacheco AC, Moro AL, Silva JFA, Moreli RR, de Miranda GR, … da Silva RMG. 2020. Salicylic acid foliar application increases biomass, nutrient assimilation, primary metabolites and essential oil content in Achillea millefolium L. Scientia Horticulturae 270, 109436.

Idrees M, Naeem M, Aftab T, Khan MMA. 2011. Salicylic acid mitigates salinity stress by improving antioxidant defence system and enhances vincristine and vinblastine alkaloids production in periwinkle [Catharanthus roseus (L.) G. Don]. Acta Physiologiae Plantarum 33(3), 987-999.

Idrees M, Naeem M, Aftab T, Khan MMA. 2013. Salicylic acid restrains nickel toxicity, improves antioxidant defence system and enhances the production of anticancer alkaloids in Catharanthus roseus (L.). Journal of hazardous materials 252, 367-374.

Jumali SS, Said IM, Ismail I, Zainal Z. 2011. Genes induced by high concentration of salicylic acid in’Mitragyna speciosa‘. Australian Journal of Crop Science 5(3), 296-303.

Kazemi M. 2013. Foliar application of salicylic acid and calcium on yield, yield component and chemical properties of strawberry. Bulletin of Environment, Pharmacology and Life Sciences 2(11), 19-23.

Khan W, Prithiviraj B, Smith DL. 2003. Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of plant physiology 160(5), 485-492.

Koo YM, Heo AY, Choi HW. 2020. Salicylic Acid as a Safe Plant Protector and Growth Regulator. The plant pathology journal 36(1), 1–10.

Korsangruang S, Soonthornchareonnon N, Chintapakorn Y, Saralamp P, Prathanturarug S. 2010. Effects of abiotic and biotic elicitors on growth and isoflavonoid accumulation in Pueraria candollei var. candollei and P. candollei var. mirifica cell suspension cultures. Plant Cell, Tissue and Organ Culture (PCTOC) 103(3), 333-342.

Mancinelli AL, Yang CP, Rabino I, Kuzmanoff KM. 1976. Photocontrol of Anthocyanin Synthesis: V. Further Evidence against the Involvement of Photosynthesis in High Irradiance Reaction Anthocyanin Synthesis of Young Seedlings. Plant physiology 58(2), 214–217.

Maurya B, Rai KK, Pandey N, Sharma L, Goswami NK, Rai SP. 2019. Influence of salicylic acid elicitation on secondary metabolites and biomass production in in-vitro cultured Withania coagulans (L.) Dunal. Plant Archives 19(1), 1045-1308.

Obinata N, Yamakawa T, Takamiya M, Tanaka N, Ishimaru K, Kodama T. 2003. Effects of salicylic acid on the production of procyanidin and anthocyanin in cultured grape cells. Plant Biotechnology 20(2), 105-111.

Odoh UE, Ezugwu CO, Okoro EC. 2012. Quantitative phytochemical, proximate/nutritive composition analysis of Beta Vulgaris Linnaeus (Chenopodiceae). Planta Medica 78(11), PI116.

Palve SB, Ahire DD, Arsule CS. 2021. Influence of various concentrations of salicylic acid on germination and some morphological characteristics of Beta vulgaris L. International Journal of Botany Studies 6(5), 1387-1393.

Piattelli M, De Nicola MG, Castrogiovanni V. 1969. Photocontrol of amaranthin synthesis in Amaranthus tricolor. Phytochemistry 8(4), 731-736.

Pitta–Alvarez SI, Spollansky TC, Giulietti AM. 2000. The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzyme and Microbial Technology 26(2-4), 252-258.

Rodrigues-Brandão I, Kleinowski AM, Einhardt AM, Lima MC, Amarante LD, Peters JA, Braga EJB. 2014. Salicylic acid on antioxidant activity and betacyan in production from leaves of Alternanthera tenella. Ciência Rural 44, 1893-1898.

Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR. 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant science 164(3), 317-322.

Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture 16(3), 144-158.

Wen PF, Chen JY, Kong WF, Pan QH, Wan SB, Huang WD. 2005. Salicylic acid induced the expression of phenylalanine ammonia-lyase gene in grape berry. Plant Science 169(5), 928-934.

Yao H, Tian S. 2005. Effects of pre-and post-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage. Postharvest Biology and Technology 35(3), 253-262.