Experimental analysis of upstream channel slope effect on discharge coefficient in side weirs

Paper Details

Research Paper 01/01/2015
Views (487)
current_issue_feature_image
publication_file

Experimental analysis of upstream channel slope effect on discharge coefficient in side weirs

Ali Hooshmand Aini, Habib Mousavi Jahromi, Hossein Sedghi, Amir Khosrojerdi
J. Biodiv. & Environ. Sci. 6(1), 751-760, January 2015.
Copyright Statement: Copyright 2015; The Author(s).
License: CC BY-NC 4.0

Abstract

Weirs are one of the oldest and simplest hydraulic structures which are used by hydraulic engineers for centuries in flow measurement, loss of energy, diversion of flow, water depth adjustment and other purposes. According to the popular usage of side weirs in irrigation and drainage system, discharge coefficient of side weirs obtaining, has always been considered by various water engineering researchers. In this research with the usage of experimental model, we have studied the effect of upstream channel slope on discharge coefficient in side weirs. According to the experimental results a non-dimensional equation for discharge coefficient calculation has been offered. At the end based on available equations we did statistical analysis of results. The reason of this event can be described in proximity of model assumption of the two examinations. As it is mentioned Ranga Raju et al. have done discharge coefficients on the wide edge weirs, Cheong has done discharge coefficients in Trapezoidal channels and Subramanya and Awasthy have done their studies on side weirs with zero threshold.

Aghazadegan A. 2009. Numerical and Experi-mental Investigation of Flow in Side Weir of Dam (case study: side weir of Ajabshir dam), Ms.c dissertation, Islamic azad university of science and research, Tehran branch 22-24.

Borghei SM, Jalili MR, Ghodsian M. 1999. Discharge coefficient for sharp crested side weir in subcritical flow, J of Hydraulic Engineering 125 (10).

Cheong HF. 1991. Discharge coefficient of lateral diversion from trapezoidal channel, J. Irrig. Drain. Eng 117(4), 461–475.

Computers RWO, May BC, Bromwich Y, Gasowski CE, Rickard. 2003. Hydraulic Design of Side Weirs, Thomas Telford Publishing 4-10.

Hager WH. 1987. Lateral outflow over side weirs, J. Hydraulic. Eng 113(4), 491–504.

Honar T. 2002. Hydraulic algorithm of inclined side weirs in non-prismatic channels.

Hosseini SM, Abrishami J. 2002. Hydraulic in open channel, Ferdosi Mashhad University Publication, 3th edition 355.

Jalili Ghazizadeh MR, Borghei M, Ghodsian M. 1996. Experimental investigation of side weir in subcritical flow, 4th International conference of civil engineering, Tehran.

Nemaie MR, Sabagh Yazdi SR, Jalalediny MS, Habibi M, Gafouri Azar M. 2013. Experimental Investigation on Discharge Coefficient of Side Weir in Floodwater Spreading Systems.

Robinson DI, Mcghee TJ. 1993. Computer modeling of side-flow weirs, J of Irrigation and Drainage Engineering 119 (2).

Shafayee Bajestan M, Izadjo F. 1995. Computer modeling to design a side weir, Journal of Tabriz University.

Shahab J. 2004. Meet spss software for analyzing, Institute of Statistics 31.

Singh R,  Manivannan  D,  Satyanarayana  T. 1994. Discharge coefficient of rectangular side weirs. ASCE Journal of Irrigation and Drainage Engineering 120(4), 814-9.

Subramanya K, Awasthy SC. 1972. Spatially varied flow over side weirs, J. Hydr. Eng. ASCE 98(1), 1-10.

Swamee PK, Santosh KP, Masoud SA. 1994, Side weir analysis using elementary discharge coefficient.” J. Irrig. Drain. Eng 120 (4), 742–755.

Uyumaz A, Muslu Y. 1985. Flow over side weir in circular channels.” J. Hydraul. Eng 111 (1), 144–160.

ValiSamani HM. 2004. Dimensional mathematical model of a hydraulic jump hydraulic side weir in place, Journal of Agricultural Sciences and Natural Resources, Volume IV, Issue VI.

Related Articles

Assessing public awareness and knowledge of drinking water safety in Carmen, Cagayan De Oro City, Philippines

Ronnie L. Besagas, Romeo M. Del Rosario, Angelo Mark P. Walag, J. Biodiv. & Environ. Sci. 27(4), 80-85, October 2025.

Baseline floristics and above-ground biomass in permanent sample plots across miombo woodlands in different land tenure systems in Hwedza, Zimbabwe

Edwin Nyamugadza, Sara Feresu, Billy Mukamuri, Casey Ryan, Clemence Zimudzi, J. Biodiv. & Environ. Sci. 27(4), 65-79, October 2025.

Adapting to shocks and stressors: Aqua-marine processors approach

Kathlyn A. Mata, J. Biodiv. & Environ. Sci. 27(4), 57-64, October 2025.

Design and development of a sustainable chocolate de-bubbling machine to reduce food waste and support biodiversity-friendly cacao processing

John Adrian B. Bangoy, Michelle P. Soriano, J. Biodiv. & Environ. Sci. 27(4), 41-47, October 2025.

Ecological restoration outcomes in Rwanda’s Rugezi wetland: Biodiversity indices and food web recovery

Concorde Kubwimana, Jean Claude Shimirwa, Pancras Ndokoye, J. Biodiv. & Environ. Sci. 27(4), 32-40, October 2025.

Noise pollution in the urban environment and its impact on human health: A review

Israa Radhi Khudhair, Bushra Hameed Rasheed, Rana Ihssan Hamad, J. Biodiv. & Environ. Sci. 27(4), 28-31, October 2025.

Prevalence of Anaplasma marginale and Ehrlichia ruminantium in wild grasscutter’ specific ticks in southern Côte d’Ivoire

Zahouli Faustin Zouh Bi, Alassane Toure, Yatanan Casimir Ble, Yahaya Karamoko, J. Biodiv. & Environ. Sci. 27(4), 21-27, October 2025.