Extreme learning machine for cancerclassification from miRNA gene expression data

Paper Details

Research Paper 01/05/2022
Views (626)
current_issue_feature_image
publication_file

Extreme learning machine for cancerclassification from miRNA gene expression data

Ansuman Kumar, Anindya Halder
Int. J. Biosci. 20(5), 169-175, May 2022.
Copyright Statement: Copyright 2022; The Author(s).
License: CC BY-NC 4.0

Abstract

Cancer classification from microRNA (miRNA) gene expression data is a difficult task in system biology and machine learning as conventional classification methods require a sufficiently large number of labeled samples to train the classifiers accurately, particularly when the labeled samples are very expensive and difficult to collect. Therefore, conventional classification methods usually do not provide the desired classification accuracy due to the scarcity of training samples. In this context, we present an extreme learning machine (ELM) technique for cancer classification from miRNA gene expression data that can improve the classification accuracy as it is extremely fast and accurate compared to other traditional methods.  The presented method is evaluated using publicly available miRNA gene expression datasets of breast cancer, pancreatic cancer, colorectal cancer, prostate cancer and lung cancer in terms of classification accuracy, precision, recall, macro F1-measure, micro F1-measure and kappa in comparison to four other state-of-the-art methods. Experimental results justify the dominance of the ELM method over the other compared methods for cancer sample classification from miRNA Gene Expression data.

Aha DW, Kibler D, Albert MK. 1991. Instance-Based Learning Algorithms. Machine Learning 6, 37–66. https://doi.org/10.1007/BF00153759

Akusok A, Bjrk K, Miche Y, Lendasse A. 2015. High-performance extreme learning machines: A complete toolbox for big data applications. IEEE Access 3, 1011–1025. https://doi.org/10.1109/ACCESS.2015.2450498

Chandra B, Gupta M. 2011. Robust approach for estimating probabilities in naïve Bayesian classifier for gene expression data. Expert Systems with Applications 38(3), 1293-1298. https://doi.org/10.1016/j.eswa.2010.06.076

Chen X, Ishwaran H. 2012. Random forests for genomic data analysis. Genomics 99(6), 323–329. https://doi.org/10.1016/j.ygeno.2012.04.003

Clough E, Barrett T. 2016. The gene expression omnibus database. Statistical Genomics: Methods in Molecular Biology, Humana Press, New York 1418, 93–110. https://doi.org/10.1007/978-1-4939-3578-9_5

Cohen J. 1960.  A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20, 37–46. https://doi.org/10.1177/001316446002000104

Ding S, Zhao H, Zhang Y, Xu X, ru N. 2013.  Extreme learning machine: algorithm, theory and applications. Artificial Intelligence Review 44(06), 1–8. https://doi.org/10.1007/s10462-013-9405-z

Esquela-Kerscher E, Slack FJ. 2006. Oncomirs-micro RNAs with a role in cancer. Nature reviews cancer 6(4), 259–269. https://doi.org/10.1038/nrc1840

Haider AA, Asghar S. 2013. A survey of logic-based classifiers. International Journal of Future Computer and Communication 2(2), 126–129. https://doi.org/10.7763/IJFCC.2013.V2.135

Halder A, Misra S. 2014. Semi-supervised fuzzy k-nn for cancer classification from microarray gene expression data. In: 1st International Conference on Automation, Control, Energy and Systems (ACES 2014) (IEEE Computer Society Press). https://doi.org/10.1109/ACES.2014.6808013

Halder A, Kumar A. 2019. Active learning using rough fuzzy classifier for cancer predication from microarray gene expression data. Journal of Biomedical Informatics 92, p 103136. https://doi.org/10.1016/j.jbi.2019.103136

Huang G, Zhu Q, Siew C. 2006. Extreme learning machine: Theory and applications. Neurocomputing 70(1), 489–501. https://doi.org/10.1016/j.neucom.2005.12.126

Huang G, Huang GB, Song S, You K. 2015. Trends in extreme learning machines: a review. Neural Networks 61, 32–48. https://doi.org/10.1016/j.neunet.2014.10.001

Hwang HW, Mendell JT. 2006.  Micrornas in cell proliferation, cell death, and tumorigenesis. British journal of cancer 96(6), 776–780. https://doi.org/10.1038/sj.bjc.6603023

Kumar A, Halder A. 2019.  Active learning using fuzzy-rough nearest neighbour classifier for cancer prediction from microarray gene expression data. International Journal of Pattern Recognition and Artificial Intelligence 34(1), p. 2057001. https://doi.org/10.1142/S0218001420570013

Kumar A, Halder A. 2020.  Ensemble-based active learning using fuzzy-rough approach for cancer sample classification. Engineering Applications of Artificial Intelligence 91, p. 103591. https://doi.org/10.1016/j.engappai.2020.103591

Marak DCB, Halder A, Kumar A. 2021. Semi-supervised ensemble learning for efficient cancer sample classification from miRNA gene expression data. New Generation Computing 39, 487–513. https://doi.org/10.1007/s00354-021-00123-5

Pirooznia M, Yang J, Yang MQ, Deng Y. 2008. A comparative study of different machine learning methods on microarray gene expression data. BMC Genomics 9(1), 1–13. https://doi.org/10.1186/1471-2164-9-S1-S13

Sung H, Ferlay J, Siegel R L, Laversanne M, Soerjomataram I. 2021. A. Jemal and F. Bray, Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 71(3), 209–249. https://doi.org/10.3322/caac.21660

Tarek S, El-Khoribi R, Shoman M. 2017.  Gene expression-based cancer classification. Egyptian Informatics Journal 18(3), 151–159. https://doi.org/10.1016/j.eij.2016.12.001

Vanitha CDA, Devaraj D, Venkatesulu M. 2015. Gene expression data classification using support vector machine and mutual information-based gene selection. Procedia Computer Science 47, 13–21. https://doi.org/10.1016/j.procs.2015.03.178

Related Articles

Medicinal plants sold in Daloa markets: Traditional knowledge and Public health issues

Kouakou Yao Bertin, Kouakou Assoman Serge Alain, Kouame Yao Anicet Gervais, Malan Djah François, Bakayoko Adama, Int. J. Biosci. 27(2), 200-210, August 2025.

Agronomic performance and profitability of coffee wildlings using different soil media mixtures

Maribel L. Fernandez, Ricardo B. Casauay, Ronel A. Collado, Int. J. Biosci. 27(2), 189-199, August 2025.

Implications of aberrant glycosylation on age-related disease progression

Tahmid Ahmad Patwary, Mukramur Rahman, Md. Nafis Fuad Prottoy, Sayad Md. Didarul Alam, Int. J. Biosci. 27(2), 176-188, August 2025.

Design and development of solar powered water sprayer: A green technology innovation

Lorenzo V. Sugod, Int. J. Biosci. 27(2), 159-175, August 2025.

Knowledge, attitudes, practices, and social awareness regarding SARS-CoV-2 infection in the kyrgyz population in the post-pandemic period

Mirza Masroor Ali Beg, Haider Ali, Yahya Nur Ahmed, Yavuz Gunduz, Hafsa Develi, Tilekeeva UM, Int. J. Biosci. 27(2), 151-158, August 2025.

Tumor suppressing ability of myrtenal in DMBA-induced rat mammary cancer: A biochemical and histopathological evaluation

Manoharan Pethanasamy, Shanmugam M. Sivasankaran, Saravanan Surya, Raju Kowsalya, Int. J. Biosci. 27(2), 141-150, August 2025.

Assessing tree diversity in cashew plantations: Environmental and agronomic determinants in buffer zones of Mont Sangbé National Park, western Côte d’Ivoire

Kouamé Christophe Koffi, Kouakou Hilaire Bohoussou, Serge Cherry Piba, Naomie Ouffoue, Sylvestre Gagbe, Alex Beda, Adama Tondossama, Int. J. Biosci. 27(2), 122-133, August 2025.