Fish molasses as indigenous nutrient source in the growth and yield of economically important vegetables in simple nutrient addition program (SNAP) hydroponics system

Paper Details

Research Paper 01/01/2022
Views (907)
current_issue_feature_image
publication_file

Fish molasses as indigenous nutrient source in the growth and yield of economically important vegetables in simple nutrient addition program (SNAP) hydroponics system

Maria Danesa S. Rabia
Int. J. Biosci. 20(1), 155-162, January 2022.
Copyright Statement: Copyright 2022; The Author(s).
License: CC BY-NC 4.0

Abstract

Simple Nutrient Addition Production (SNAP) hydroponics production system in this system any container with cover can be used as long as it can contain approximately 2 liters of solution. This study was conducted to evaluate the performance of economically important vegetables grown in SNAP hydroponics and conventional production system. The experimental was laid out in a simple Randomized Complete Block Design (RCBD) with three replications. The variable used was method of growing that consists of conventional (Container gardening) and SNAP hydroponics using fish molasses. Among of the four vegetables grown sweet pepper and lettuce performed well under the SNAP hydroponics system. The plants were taller, produced more leaves, matured earlier and had higher yield compared to those grown under the conventional production system. Both the broccoli and tomato did not perform well in SNAP hydroponics and conventional production system. Broccoli was succumbed by the attack of pest (Helecoverpa armegera ) while tomato was lodged due to strong winds.

Anonymous. 2007. Benefits of hydroponics Food Production. From http://www.hydroponics. com.jack/index.html. Accessed March, 2007

Bradley P. 2000. Fast Food Relief. Practical Hydroponics and Greenhouses. Caspec Publications, Sydney Australia 51, 73-81

Ikeda H. 2000. Asian Vegetables Research and Development Center (AVRDC) Non-Circulating Hydroponic System. Hydroponic Society of America. From https://slidetodoc.com/avrdc-the-world-vegetable – center-avrdcthe-world-vegetable/

Jefferson E. 1999. Thriving on a Survival Garden, Growing Edge, New Moon Publishing, Corvallis, OR10 (6), 44-55

Jensen MH. 1990. Hydroponic Culture for the tropic: Opportunities and Alternatives. International Seminar on Hydroponic Culture of High Value Crops in the tropics. 25-27 Nov. PPPL, UPM, Serdang Selangor, Malaysia.

Mohyuddin M, Younnus M. 1999. Overview of the Greenhouse Vegetable Industry in Alberta Canada. Proc. Int. Sym. Growing Media and Hydroponics Ed. A.P Papadopoulos. Acta. Hort 481. ISHS

Philippine Council for Agriculture, Aquatic and Natural Resources Research and Development (PCARRD). 1980. Standard Method of Soil Analysis for Plant Tissue, Water and Fertilizers. Farm Res. Div. Los Baňos, Laguna.187 pp.

Resh HM. 1989. Hydroponic Food Production. A Definite Guidebook of Soilless Food Growing Methods. Woodbridge Press Publishing Co. 426 pp.

Santos PJA, Ocampo ETM. 2002. SNAP Hydroponics. Institute of Plant Breeding, College of Agriculture, U.P. Los Baňos, College, Laguna.

Related Articles

Muscle type and meat quality of local chickens according to preslaughter transport conditions and sex in Benin

Assouan Gabriel Bonou*, Finagnon Josée Bernice Houéssionon, Kocou Aimé Edenakpo, Serge Gbênagnon Ahounou, Chakirath Folakè Arikè Salifou, Issaka Abdou Karim Youssao, Int. J. Biosci. 27(6), 241-250, December 2025.

Effects of micronutrients and timing of application on the agronomic and yield characteristics of cucumber (Cucumis sativus)

Princess Anne C. Lagcao, Marissa C. Hitalia*, Int. J. Biosci. 27(6), 214-240, December 2025.

Response of different soybean varieties to phosphorus fertilizer microdosing and rhizobium inoculation in the sub-humid zone of Northern Benin

Pierre G. Tovihoudji*, Kamarou-Dine Seydou, Lionel Zadji, Sissou Zakari, Valerien A. Zinsou, Int. J. Biosci. 27(6), 201-213, December 2025.

On-farm validation of black soldier fly larvae meal as a sustainable replacement for shrimp meal in rainbow trout diets in the mid hills of Nepal

Ishori Singh Mahato, Krishna Paudel*, Sunita Chand, Anshuka Bhattarai, Int. J. Biosci. 27(6), 189-200, December 2025.

Insect fauna associated with Cucumis sativus (Cucurbitales: Cucurbitaceae) in Parakou, A cotton-growing area of central Benin

Lionel Zadji*, Mohamed Yaya, Roland Bocco, Prudencia M. Tovignahoua, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, Hugues Baimey, Leonard Afouda, Int. J. Biosci. 27(6), 175-188, December 2025.

First record of two hymenopteran species, Brachymeria excarinata Gahan (Chalcididae) and Pteromalus sp. (Pteromalidae), as hyperparasitoids of Diadegma insulare in Senegal

Babacar Labou*, Etienne Tendeng, Mamadou Diatte, El hadji Sérigne Sylla, Karamoko Diarra, Int. J. Biosci. 27(6), 167-174, December 2025.

Hepatoprotective and antinociceptive effects of terpinolene in streptozotocin-induced diabetic peripheral neuropathic rats

Ravishankar Sarumathi, Muthukumaran Preethi, Chandrasekaran Sankaranarayanan*, Int. J. Biosci. 27(6), 156-166, December 2025.