Genetic diversity in some euphrates poplar (Populus euphratica O.) ecotypes in Iran using microsatellites (SSRs) markers

Paper Details

Research Paper 01/07/2016
Views (712)
current_issue_feature_image
publication_file

Genetic diversity in some euphrates poplar (Populus euphratica O.) ecotypes in Iran using microsatellites (SSRs) markers

Hossein Tavakoli-Neko, Anoushirvan Shirvany, Mohammad Hassan Assareh, Mohammad Reza Naghavi,Mohammad Pessarakli
J. Biodiv. & Environ. Sci. 9(1), 434-440, July 2016.
Copyright Statement: Copyright 2016; The Author(s).
License: CC BY-NC 4.0

Abstract

Euphrates poplar (Populus euphratica Oliv.) is a unique woody species which is naturally distributed in desert areas of some parts of Asia and Africa. Because of its outstanding features, it is a model plant to study environment stress tolerance. This research was conducted to evaluate the genetic variation in 12 ecotypes of P. euphratica in Iran through 10 simple sequence repeats (SSRs) primers from 2015 to 2016. The average numbers of alleles observed in each ecotype was 6.43 and average numbers of effective alleles was 5.58. The average of observed heterozygosis was 0.65 and average of expected heterozygosis was 0.80. The ecotypes were complying with Hardy-Weinberg’s equilibrium in all loci, except Marand ecotype for two of the ten primers that showed deviation of the balance (p<0.05). The Shannon information index was 1.75. Analysis of molecular variance (AMOVA) showed that 3% of molecular variance belongs to intra-population and 97% belongs to inter-population. The PCA showed six principal components covered 22.86% of the total variance. Clustering analysis of ecotypes through genetic distance, the examined ecotypes were divided into six groups, while the geographic distance did not have any significant effect on genetic differences. Overall, the results indicated that P. euphratica stands covered a vast area of Iran in the past, and probably had not been fragmented; it seems vast areas of Iran are potentially ready for revival of P. euphratica forests.

FAO. 1979. Poplar and Willow in wood production and land use 328 p.

Lin SZ, Zhang ZY, Zhang Q, Lin YZ. 2006. Progress in the study of molecular genetic improvements of poplar in China. Journal of Integrative Plant Biology 48(9), 1001-1007.

Murray MG, Thompson WF. 1980. Rapid isolation of high molecular weight plant. Nucleic Acids Research 8, 4321-4325.

Nei M, Li WH. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceeding of the National Academy of Sciences of the USA 76, 5269-5273.

Pascal E, Steffen F, Martin S. 2009. Development of two microsatellite multiplex PCR systems for high throughput genotyping in Populus euphratica. Jour-nal of Forestry Research 20(3), 195-198.

Sabeti H. 2003. Forests, Trees and Shrubs of Iran. 3 edn. University of Yazd Yazd, Iran.

Saito Y, Shiraishi S, Tanimoto T, Yin L, Watanabe S, Ide Y. 2002 Genetic diversity of Populus euphratica populations in northwestern China determined by RAPD DNA. New Forests 23, 97-103.

Tuskan GA, DiFazio SP, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, et al. 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793), 1596-1604.

Wang J, Li Z, Guo Q. 2011. Genetic variation within and among populations of a desert poplar (Populus euphratica) revealed by SSR markers. Annals of forest science 68, (1143-1149).

Wang J, Wu Y, Ren G, Guo Q, Liu J. 2011. Genetic Differentiation and Delimitation among Ecologically Diverged Populus euphratica and P.pruinosa. . PLoS ONE 6(10), e26530.

Wu Y, wamg W, Liu J. 2008. Development and characterization of microsatellite markers in Populus euphratica. Molecular Ecology Resources 8, 1142-1144.

Xu F, Feng, S, Wu, R, Du FK. 2013. Two highly validated SSR multiplexes (8-plex) for Euphrates’ poplar, Populus euphratica (Salicaceae). Molecular Ecology Resources 13, 144-153.

Related Articles

Assessing public awareness and knowledge of drinking water safety in Carmen, Cagayan De Oro City, Philippines

Ronnie L. Besagas, Romeo M. Del Rosario, Angelo Mark P. Walag, J. Biodiv. & Environ. Sci. 27(4), 80-85, October 2025.

Baseline floristics and above-ground biomass in permanent sample plots across miombo woodlands in different land tenure systems in Hwedza, Zimbabwe

Edwin Nyamugadza, Sara Feresu, Billy Mukamuri, Casey Ryan, Clemence Zimudzi, J. Biodiv. & Environ. Sci. 27(4), 65-79, October 2025.

Adapting to shocks and stressors: Aqua-marine processors approach

Kathlyn A. Mata, J. Biodiv. & Environ. Sci. 27(4), 57-64, October 2025.

Design and development of a sustainable chocolate de-bubbling machine to reduce food waste and support biodiversity-friendly cacao processing

John Adrian B. Bangoy, Michelle P. Soriano, J. Biodiv. & Environ. Sci. 27(4), 41-47, October 2025.

Ecological restoration outcomes in Rwanda’s Rugezi wetland: Biodiversity indices and food web recovery

Concorde Kubwimana, Jean Claude Shimirwa, Pancras Ndokoye, J. Biodiv. & Environ. Sci. 27(4), 32-40, October 2025.

Noise pollution in the urban environment and its impact on human health: A review

Israa Radhi Khudhair, Bushra Hameed Rasheed, Rana Ihssan Hamad, J. Biodiv. & Environ. Sci. 27(4), 28-31, October 2025.

Prevalence of Anaplasma marginale and Ehrlichia ruminantium in wild grasscutter’ specific ticks in southern Côte d’Ivoire

Zahouli Faustin Zouh Bi, Alassane Toure, Yatanan Casimir Ble, Yahaya Karamoko, J. Biodiv. & Environ. Sci. 27(4), 21-27, October 2025.