Genetic diversity of wheat hybrid lines against leaf rust of wheat in relation to epidemiological factors

Paper Details

Research Paper 01/08/2018
Views (599)
current_issue_feature_image
publication_file

Genetic diversity of wheat hybrid lines against leaf rust of wheat in relation to epidemiological factors

Khizar Razzaq, Abdul Rehman, M. Waqar Alam, Saira Mehboob, Romana Anjum, Farooq Ahmad, Sundas Hanif, Yasir Ali, Zeshan Ali, Owais Yasin
Int. J. Biosci. 13(2), 18-27, August 2018.
Copyright Statement: Copyright 2018; The Author(s).
License: CC BY-NC 4.0

Abstract

Wheat rusts are the significant diseases of wheat crop and significant threats all over the world. Among all major wheat diseases occurring worldwide leaf rust caused by Puccinia recondita f. sp. tritici is a big hazard when it occurs in severe condition. The susceptible germplasm and favorable environmental conditions contribute towards wide epidemic of rust diseases. In the present investigation, twenty hybrid wheat lines were screened out and correlated with epidemiological factors (i.e. minimum and maximum temperature, relative humidity, rainfall and wind speed). Results demonstrated that only one hybrid line (E9) showed resistance response against leaf rust with 70% AUDPC value. Maximum disease severity was observed at minimum and maximum temperature ranging from 8-17 and 24.5-32.5 0C, respectively. Similarly, maximum disease severity was recorded at maximum wind speed and rain fall ranging from 2.0-2.8 km/h and 1.9-5.4 mm, respectively. A negative relationship was found between relative humidity and disease severity which indicated that with increase in relative humidity disease severity decreased. A positive correlation was observed between disease severity and epidemiological factors. Thus, this disease predicting model will help the farmers in minimizing yield losses caused by leaf rust.

Afzal  SN,  Haque I ,  Ahmedani MS,  Munir M, Firdous SS,  Rauf A, Ahmad I,  Rattu AR,  Fayyaz M. 2009. Resistance potential of wheat germplasm (Triticum aestivum L.) against stripe rust disease under rainfed climate of Pakistan. Pakistan Journal of Botany 41, 1463-1475.

Anonymous. 2014. Pakistan Economic Survey p. 28. Ministry of Food, Agriculture and Livestock Federal Bureau of Statistics: Islamabad, Pakistan.

Botella Pavia P, Rodriguez Conception M. 2006. Carotenoid biotechnology in plants for nutritionally improved foods. Physiology of plants 126, 369–381.

Dixon J, Braun HJ, Crouch JH. 2009. Overview: transitioning wheat research to serve the future needs of the developing world. In: J Dixon, H J Braun, PKosina, J Crouch Eds. Wheat Facts and Futures 2009. Mexico, DF: CIMMYT.

Goswani BK, Ahmed HU. 1991. Reactions of wheat lines/varieties against leaf rust. Review of Plant Patholog y73, 75-81.

Hallauer Arnel R, Wilbert A, Russell, Lamkey KR. Corn breeding. 1988. 463.

Hussain M, Ayub N, Khan SM, Muhammad F, Hussain M. 2006. Pyramiding rust resistance and highly yield in bread wheat. Pakistan Journal of Phytopathology 18, 11-21.

Hussain M, Hassan SF, Kirmani MAS. 1980. Virulence in (Puccinia recondite Rob.ex. Desm. f. sp. Tritici) in Pakistan during 1978,1979. Proc. 5th European and Mediterranean Cereal Rust Conference. Bari, Italy 179-184.

Huerta Espino J, Singh R, German S, McCallum B, Park R, Chen W, Bhardwaj S, Goyeau H. 2011. Global status of wheat leaf rust caused by (Puccinia triticina) Euphytica179, 143-160.

Jacobs T. 1990. Abortion of infection structures of wheat leaf rust in susceptible and partially resistant wheat genotypes. Euphytica 45, 81-86.

Khan MA, Khan SM, Hussain M. 2002. Evaluation of wheat lines/varieties against artificial and natural inoculum of (Puccinia recondita f.sp. tritici) causing brown rust. Pakistan Journal of Agriculture Sciences 39, 226-231.

Khan MA, Trevathan LE. 1997. Relationship of air soil temperature to leaf rust development at three locations in Mississippi. Pakistan Journal of Phytopathology 9, 41-49.

Kolmer  JA. 1996. Genetics of resistance to wheat leaf rust. Annual Review in Phytopathology 34, 435-455.

Kolmer JA. 2005. Tracking wheat rust on a continental scale. Current Opinion in Plant Biology 8, 441-449.

Ogbonnay F, Mujeeb Kazi A, Kazi AG, Lagudah EL, Xu SS, Bonnett D. 2013. Synthetic hexaploid in wheat improvement. In: J. Janick, Ed. Plant Breeding Reviews. John Wiley & Sons Inc, p 35-122.

Park RF, Wellings CR, Bariana HS. 2007. Preface to global landscapes in cereal rust control. Australian Journal of Agriculture, Res 58,469.

Peterson RF, Campbell AB, Hannah AE. 1948. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Canadian Journal of Research Section C, 26, 496-500.

Prabhu KV, JK Luthra, SK Nayar. 1993. Slow rusting resistance in wheat to leaf rust in Northern hills of India. Review of Plant Pathology 73.

Roelfs AP, Singh RP, Saari EE. 1992. Rust diseases of wheat: Concepts and methods of disease management. CIMMYT, Mexico, D.F.

Singh RP, J Huerta Espino, Rajaram S. 2000. Achieving near immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes. Acta Phytopathologica. Hungrica 35, 133-139.

Singh TB, Tewari AN. 2001. Role of weather conditions in the development of foliar diseases of wheat under tarai conditions of north-western India. Plant Disease Research 16, 173-178.

Stubbs RW, Prescott JM, Saari EE, Dubin  HJ. 1986. Cereal disease methodology manual p 46, Mexico, DF, CIMMYT.

Stuthman DD, Leonard KJ, Garvin JM. 2007. Breeding Crops for Durable Resistance to Disease. Advance Agronomy 95, 319-367.

Vallavieillie P, Hubber L, Lecnte M, Goyeav H. 1995. Comparative effect of temperature and interrupted wet period on germination penetration and infection of (P. recondite) on wheat seedling. Phytopathology 74, 545- 548.

Related Articles

Muscle type and meat quality of local chickens according to preslaughter transport conditions and sex in Benin

Assouan Gabriel Bonou*, Finagnon Josée Bernice Houéssionon, Kocou Aimé Edenakpo, Serge Gbênagnon Ahounou, Chakirath Folakè Arikè Salifou, Issaka Abdou Karim Youssao, Int. J. Biosci. 27(6), 241-250, December 2025.

Effects of micronutrients and timing of application on the agronomic and yield characteristics of cucumber (Cucumis sativus)

Princess Anne C. Lagcao, Marissa C. Hitalia*, Int. J. Biosci. 27(6), 214-240, December 2025.

Response of different soybean varieties to phosphorus fertilizer microdosing and rhizobium inoculation in the sub-humid zone of Northern Benin

Pierre G. Tovihoudji*, Kamarou-Dine Seydou, Lionel Zadji, Sissou Zakari, Valerien A. Zinsou, Int. J. Biosci. 27(6), 201-213, December 2025.

On-farm validation of black soldier fly larvae meal as a sustainable replacement for shrimp meal in rainbow trout diets in the mid hills of Nepal

Ishori Singh Mahato, Krishna Paudel*, Sunita Chand, Anshuka Bhattarai, Int. J. Biosci. 27(6), 189-200, December 2025.

Insect fauna associated with Cucumis sativus (Cucurbitales: Cucurbitaceae) in Parakou, A cotton-growing area of central Benin

Lionel Zadji*, Mohamed Yaya, Roland Bocco, Prudencia M. Tovignahoua, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, Hugues Baimey, Leonard Afouda, Int. J. Biosci. 27(6), 175-188, December 2025.

First record of two hymenopteran species, Brachymeria excarinata Gahan (Chalcididae) and Pteromalus sp. (Pteromalidae), as hyperparasitoids of Diadegma insulare in Senegal

Babacar Labou*, Etienne Tendeng, Mamadou Diatte, El hadji Sérigne Sylla, Karamoko Diarra, Int. J. Biosci. 27(6), 167-174, December 2025.

Hepatoprotective and antinociceptive effects of terpinolene in streptozotocin-induced diabetic peripheral neuropathic rats

Ravishankar Sarumathi, Muthukumaran Preethi, Chandrasekaran Sankaranarayanan*, Int. J. Biosci. 27(6), 156-166, December 2025.