Genomic data mining through python language

Paper Details

Research Paper 01/09/2017
Views (873)
current_issue_feature_image
publication_file

Genomic data mining through python language

Rashid Saif, Kinza Qazi, Talha Tamseel, Saeeda Zia
Int. J. Biosci. 11(3), 116-125, September 2017.
Copyright Statement: Copyright 2017; The Author(s).
License: CC BY-NC 4.0

Abstract

Pythonis a rigorous programming language, which may be used for many purposes including genomic data mining. This language was designed to emphasize on code readability and syntax, which allows programmer to express code in lesser space with comprehensive and exhaustive manner. Different analysis through Python can be conducted during dry labs sessions, which infer concrete and generalizable results from the wet lab genomic experiments, such as gene expression analysis, phylogenetic, GC percentage and gene sequencing. In this article, built-in Python functions like variables, stings, operators and formatting styles are introduced, and short programs are structured, implemented and executed. Basic operators are used to perform calculations through this language, gene sequences are analyzed and small built-in functions e.g. “length, print, integers and types” of Python are also conversed in this communication. Case sensitive commands are elaborated to avoid errors during the process of computing. This endeavor also shed light on the topic that how different Python methods and functions may be used to compute data structures, dictionaries, sets, lists, tuples, loops and statements on the genomic sequences. Finally, different programs are constructed to count undefined bases in a given sequence with the help of statement, condition functions based on Boolean expressions, loops function are also used to analyze undefined amino acids present in protein sequences with the help of “for” and “while” loops.

Anders S, Pyl PT, Huber W. 2014. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 32(2), 166-169. http://dx.doi.org/10.1093/bioinformatics/btu638

Cock PJ, Antao T, Chang JT, Chapman BA, Cox  CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B. 2009. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25(11), 1422-1423. http://dx.doi.org/10.1093/bioinformatics/btp163

Goodstadt L. 2010. Ruffus: a lightweight Python library for computational pipelines. Bioinformatics 26(21), 2778-2779. www.10.1093/bioinformatics/btq524

Hamelryck T, Manderick B. 2003. PDB file parser and structure class implemented in Python. Bioinformatics 19(17), 2308-2310. http://dx.doi.org/10.1093/bioinformatics/btg299

Mann C. 2010. Python for bioinformatics. Kybernetes 39(8) http://dx.doi.org/10.1108/k.2010.06739hae.004

Lesk A. 2013. Introduction to bioinformatics. Oxford University Press.

List M, Ebert P, Albrecht F. 2017. Ten Simple Rules for Developing Usable Software in Computational Biology. PLOS Computational Biology 13(1), e1005265. http://dx.doi.org/10.1371/journal.pcbi.1005265

Oliphant TE. 2007. Python for scientific computing. Computing in Science & Engineering 9(3), 10-20. http://dx.doi.org/10.1109/mcse.2007.58

Pearson WR, Lipman DJ. 1988. Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences 85(8), 2444-2448. http://dx.doi.org/10.1073/pnas.85.8.2444

Perkins J. 2010. Python text processing with NLTK 2.0 cookbook. Packt Publ.

Przulj N. 2013. Introduction to the special issue on biological networks. Internet Mathematics 7(4), 207-208. http://dx.doi.org/10.1080/15427951.2011.621769

Related Articles

Sensory evaluation of horn snail (Telescopium telescopium) patty

Ma. Isabel P. Lanzaderas, Gilbert P. Panimdim, Proceso C. Valleser Jr.*, Int. J. Biosci. 28(2), 7-16, February 2026.

Two years evolution of deltamethrin, malathion and pirimiphos-methyl resistance in Aedes aegypti from urban in peri urban sites of Ouagadougou, Burkina Faso

Hyacinthe K. Toe*, Moussa W. Guelbeogo, Soumananaba Zongo, Aboubacar Sombie, Athanase Badolo, Int. J. Biosci. 28(2), 1-6, February 2026.

Physicochemical characterization of annatto seeds (Bixa orellana) sold in Ouagadougou and their oils extracted using chemical processes

Mah Alima Esther Traoré*, Adama Lodoun, Pingdwindé Marie Judith Samadoulougou-Kafando, Nestor Beker Dembélé, Kiswendsida Sandrine Léticia Dayamba, Charles Parkouda, Int. J. Biosci. 28(1), 169-178, January 2026.

Inventory of african yam bean (Sphenostylis stenocarpa (Hochst. ex A. Rich.) Harms) diversity in some Yoruba areas of Benin

Orobiyi Azize*, Faton Manhognon Oscar Euloge, Zongo Élisabeth Aboubié, Sossou Kpèdé Nicodème, Houngbo Marcel, Dossou Pierre Fourier, Ogoudjobi Ladékpo Sylvain, Balogoun Ibouraïman, Dansi Alexandre, Lokoyêyinou Laura Estelle, Int. J. Biosci. 28(1), 161-168, January 2026.

A severe case of human hepatic fascioliasis mimicking an oncological disease in Azerbaijan

Aygun A. Azizova*, Int. J. Biosci. 28(1), 155-160, January 2026.

Combined effect of irrigation frequency and leaf harvesting intensity on soil water content and productivity of baobab (Adansonia digitata) seedlings in vegetable production

Sissou Zakari, Imorou F. Ouorou Barrè, Mouiz W. I. A. Yessoufou*, Colombe E. A. E. Elegbe, Amamath S. Boukari, P. B. Irénikatché Akponikpè, Int. J. Biosci. 28(1), 143-154, January 2026.

Develop sustainable coffee-based farming model using cash crops production

Maribel L. Fernandez, Roje Marie C. Rosqueta*, Diosa G. Alasaas, Boyet C. Pattung, Jaylord Dalapo, Janette Empleo, Int. J. Biosci. 28(1), 134-142, January 2026.

Animal anthrax in northern Tanzania (2015-2025): Epidemiological trends and frontline response capacity

Yohana Michael Kiwone*, Beatus Lyimo, Rowenya Mushi, Joram Buza, Int. J. Biosci. 28(1), 123-133, January 2026.