Geochemistry of rare earth elements of magnetite and apatite in choghartiron depositand comparison with kirunairon depositand study the origin of choghart deposit (Bafq, Central Iran)

Paper Details

Research Paper 01/01/2015
Views (475)
current_issue_feature_image
publication_file

Geochemistry of rare earth elements of magnetite and apatite in choghartiron depositand comparison with kirunairon depositand study the origin of choghart deposit (Bafq, Central Iran)

Zohreh Hossein Mirzaei Beni, Ebrahim Panahpour
J. Biodiv. & Environ. Sci. 6(1), 690-698, January 2015.
Copyright Statement: Copyright 2015; The Author(s).
License: CC BY-NC 4.0

Abstract

The Choghart iron oxide-apatite deposit is placed within felsic volcanic tuffs, rhyolite rocks and volcanic-sedimentary sections belonging to the lower Cambrian period. The major ore in the Choghart deposit includes amounts of magnetite and little amounts of hematite. These ores come with silicate albite gangues, quartz, actinolite, tremolite and apatite. Chogh artapatites are fluorapatite type with OH and CI. Choghart apatites showed enriched from LREE and depleted from EU. This distribution is similar to the rare earth elements distribution in the iron apatite Kiruna deposit. Choghart magnetite show depletion of Eu and Ce and enrichment of Gd and Pr. This depletion and enrichment are also seen in Kiruna-type apatite iron deposits. Choghart deposit is in the range of iron-apatite deposits (IOA) and a subgroup of the IOCG group and Kiruna-type deposits.Comparing the geochemistry of magnetite and apatite in the Choghart deposit with the Kiruna-type deposits shows a magmatic origin for Choghart.

Beaudoin G. 2007. La composition des oxydes de fer: unnouveloutild’exploration. Québec Exploration.

Bonyadi Z, Garry J, Davidson B, Behzad Mehrabi A, Sebastien Meffre B, Ghazban F. 2011. Significance of apatite REE depletion and monazite inclusions in the brecciated Se- Chahun iron oxide-apatite deposit, Bafq district, Iran. Insights from paragenesis and geochemistry.Chemical Geology. 281, 253–269.

Forster HJ, Jafarzadeh A. 1994. The Bafq mining district in Central Iran-a highly mineralized Infracambrian volcanic field. Econ Geol. 89, 1697-721.

Frietsch R, Perdahl JA. 1984. Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types. Ore Geology. 9, 489-512.

Frietsch R. 1995. On the magmetic origin of iron ores of the Kiruna type. Economic Geology. 73, 478-485.

Haghipour A. 1975. Etude géologique de la région de Biabanak-Bafg (Iran Central): Pétrographiee-ttectonique du soclePrécambrien et de sacouverture. Unpublished thesis (Doctoratd’Etat).Grenoble University. 403.

Harlov DE. 2008. Origin of monazite-xenotime-zircon-fluorapatite assemblages in the peraluminous Melechov granite massif.Czech Republic. Mineral. Petrol. 94, 9–26.

Loberg B, Horndahl A. 1983. Ferride geochemistry of Swedish Precambrian iron ores. Mineralium Deposita. 18, 487-404.

Lyons JL. 1988. Volcanogenetic iron oxide deposits, Cerro de Mercado and Vicinity, Durango, Mexico. Economic Geology. 85, 1886-1906.

Mohammad Torab F. 2009. The geological and exploratory model for iron and apatite deposits in Bafq region, Central Iran. The Third Mining Conference in Iran.

Mokhtari MAA. HosseinZadeh G. Emami MH. 2003. Ore genesis for rare earth elements in Bafq-Post Badam region. The 22nd Symposium of Geosciences, Iranian Organization for Geology and Mineral Discoveries.

Moore F. Modabberi S. 2003. Origin of Ghoghart iron oxide deposit, Bafq mining district,central Iran. new isotopic and geochemical evidence. Journal of siciences.University of Tehran. 14, 259-269.

Naslund HR. 2000. The origin, emplacement, and eruption of ore magmas. IX Congreso Geologico Chileno. Actas. 2, 135–139.

Naslund HR. 2002. Magmatic iron ores and associated mineralization: examples from the Chilean High Andes and Coastal Cordillera. In Porter, T.M. ed., Hydrothermal Iron Oxide Copper-Gold and Related Deposits.A Global Perspective.volume 2. PGC Publishing. Adelaide. 207–226.

Nyström JO. Henriquez F. 1994. Magmatic features of iron ores of the Kiruna type in Chile and Sweden: ore textures and magnetite geochemistry. Economic Geology. 89, 820–839.

Taghipour S. 2013. Geochemistry and genesis of apatite within Choghart, Chadormalu and Esfordi iron-aptite deposits.PhD. Thesis.University of Tehran, 138.

Related Articles

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.

Conservation and trade dynamics of non-timber forest products in local markets in south western Cameroon

Kato Samuel Namuene, Mojoko Fiona Mbella, Godswill Ntsomboh-Ntsefong, Eunice Waki, Hudjicarel Kiekeh, J. Biodiv. & Environ. Sci. 27(2), 58-69, August 2025.

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.

An assessment of the current scenario of biodiversity in Ghana in the context of climate change

Patrick Aaniamenga Bowan, Francis Tuuli Gamuo Junior, J. Biodiv. & Environ. Sci. 27(2), 35-45, August 2025.

Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin

Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, J. Biodiv. & Environ. Sci. 27(2), 21-34, August 2025.

Biogenic fabrication of biochar-functionalized iron oxide nanoparticles using Miscanthus sinensis for oxytetracycline removal and toxicological assessment

Meenakshi Sundaram Sharmila, Gurusamy, Annadurai, J. Biodiv. & Environ. Sci. 27(2), 10-20, August 2025.

Bacteriological analysis of selected fishes sold in wet markets in Tuguegarao city, Cagayan, Philippines

Lara Melissa G. Luis, Jay Andrea Vea D. Israel, Dorina D. Sabatin, Gina M. Zamora, Julius T. Capili, J. Biodiv. & Environ. Sci. 27(2), 1-9, August 2025.

Effect of different substrates on the domestication of Saba comorensis (Bojer) Pichon (Apocynaceae), a spontaneous plant used in agroforestry system

Claude Bernard Aké*1, Bi Irié Honoré Ta2, Adjo Annie Yvette Assalé1, Yao Sadaiou Sabas Barima1, J. Biodiv. & Environ. Sci. 27(1), 90-96, July 2025.