Glyphosate resistance trait into soybean Cuban varieties: agronomical assessment of transgenic lines until F6 generation

Paper Details

Research Paper 01/10/2015
Views (192) Download (4)

Glyphosate resistance trait into soybean Cuban varieties: agronomical assessment of transgenic lines until F6 generation

Celia Delgado, Gil A. Enríquez, Rodobaldo Ortiz, Odett Céspedes, Natacha Soto, Yuniet Hernández, Merardo Pujol
Int. J. Agron. Agri. Res.7( 4), 75-85, October 2015.
Certificate: IJAAR 2015 [Generate Certificate]


Glyphosate-resistant (GR) soybean was one of the first major applications of genetic engineering in field crops and offered farmers a vital tool in fighting weeds. Weeds are a problem for soybean production in Cuba, so our work aim was the GTS 40-3-2 event introgression into Cuban varieties. Two local cultivars were crossed with transgenic genotypes that carry the event. From F1 to F3 generations, individual plants that produced more than 60 g of seeds per plant were chosen to obtain next generation. Individual lines were selected from F4 generation. F5 and F6 generations of five selected transgenic lines and their relatives were chosen to evaluate seven agronomic traits throughout the summers of 2012 and 2013. A Random Block experimental design was done. First flowering (R1) and maturity (R8) stages of all genotypes were affected by planting date. Plant height of I1B2-3, I1B4, I36B4 and RP5 lines ranged from 80 to 111 cm. I1B2-2 and I1B2-3 lines would be suitable for mechanized harvesting because they had the insertion of the first pod at 14.63 cm and 13.93 cm respectively. I36B4 line produced the greatest number of pods per plant (127). Transgenic lines produced more than 180 seeds per plant and 100-seed weight ranged from 13.75 g to 17.46 g. Seed yield per plant of transgenic lines and their parents IncaSoy36, CEB2 and CEB4 weren’t statistically different. These results could be a start point for other studies involving larger areas, different planting dates and localities.


Bonny S. 2009. Genetically Modified Glyphosate-Tolerant Soybean in the USA: Adoption Factors, Impacts and Prospects – A Review. Agronomical Sustainable Development 28, 21-32.

Calvo ÉS, Kiihl RA, Garcia A, Harada A, Hiromoto DM. 2008. Two major recessive soybean genes conferring soybean rust resistance. Crop Science 48, 1350-1354.

Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ. 2007. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochemical and Biophysical Research Communications 353, 299-305.

Cicek MS, Chen P, Maroof S, Buss GR. 2006. Interrelationships among agronomic and seed quality traits in an interspecific soybean recombinant inbred population. Crop Science 46, 1253-1259.

Cunha W, Tinoco M, Pancoti H, Ribeiro R, Aragão F. 2010. High resistance to Sclerotinia sclerotiorum in transgenic soybean plants transformed to express an oxalate decarboxylase gene. Plant Pathology 59, 654-660.

De Bruin J, Pederson P. 2008. Yield improvement and stability for soybean cultivars with resistance to Heterodera glycines Ichinohe. Agronomy Journal 100, 1354-1359.

Díaz MF, Padilla C, Torres V, González A, Curbelo F, Noda A. 2003. Caracterización bromatológica de variedades de soya (Glycine max) en producción de forrajes, forrajes integrales y granos en siembras de verano. Revista Cubana de Ciencia Agrícola 37, 311-317.

Elmore RW, Roeth FW, Nelson LA, Shapiro CA, Klein RN, Knezevic SZ, Martin A. 2001. Glyphosate-resistant soybean cultivar yields compared with sister lines. Agronomy Journal 93, 408-412.

Fundora Z, López R, Hernández M, Ravelo I, López J, Sánchez A. 2003. Evaluación agronómica de germoplasma de soya (Glycine max L. Merr.) en Cuba. Agronomía Mesoamericana 14, 79-84.

Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F. 2014. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnology Journal 12, 934-940.

Ibrahim S. 2012. Agronomic studies on irrigated soybeans in central Sudan: II. Effect of sowing date on grain yield and yield components. International Journal of AgriScience 2, 766-773.

Iqbal Z, Arshad M, Ashraf M, Naeem R, Malik MF, Waheed A. 2010. Genetic divergence and correlation studies of soybean [Glycine max (L.) Merrill.] genotypes. Pakistan Journal of Botany 42, 971-976.

Iznaga AC, Pérez RA, Valdés AB, Sánchez AC, Valdés GR, Romero SC. 2009. Influencia de la época de siembra sobre el crecimiento y desarrollo de tres cultivares de soya [Glycine max (L.) Merr.]. Centro Agrícola 36, 33-39.

James C. 2014. Global Status of Commercialized Biotech/GM Crops: 2014. ISAAA: Ithaca, NY.

Jin J, Liu X, Wang G, Mi L, Shen Z, Chen X, Herbert SJ. 2010. Agronomic and physiological contributions to the yield improvement of soybean cultivars released from 1950 to 2006 in Northeast China. Field Crops Research 115, 116-123.

Krishnan HB. 2005. Engineering soybean for enhanced sulfur amino acid content. Crop Science 45, 454-461.

Mahbub MM, Rahman MM, Hossain MS,Mahmud F, Mir Kabir MM. 2015. Genetic Variability, Correlation and Path Analysis for Yield and Yield Components in Soybean. American-Eurasian J. Agric. & Environ. Science 15, 231-236.

Mahmoodi B, Mosavi AA, Daliri MS, Namdari M. 2013. The evaluation of different values of phosphorus and sulfur application in yield, yield components and seed quality characteristics of soybean (Glycine max L.). Advances Environmental Biology 7, 170-176.

Malik MFA, Qureshi AS, Ashraf M, Ghafoor A. 2006. Genetic variability of the main yield related characters in soybean. International Journal of Agriculture and Biology 8, 815-819.

Mebrahtu T, Devine T. 2008. Combining ability analysis for selected green pod yield components of vegetable soybean genotypes (Glycine max). New Zealand Journal of Crop and Horticultural Science 36, 97-105.

Morrison MJ, Voldeng HD, Cober ER. 2000. Soybean agronomic changes from 58 years of genetic improvement of short-season soybean cultivars in Canada. Agronomy Journal 92, 780-784.

Neves JA, Lopes da Silva JA, Silva DR, Sediyama T, Teixeira RDC, Santos R. 2013. Agronomic performance of soybean genotypes in low latitude in Teresina-PI, Brazil. Journal of Agricultural Science 5, 243-253.

Ngalamu T, Ashraf M, Meseka S. 2013. Soybean (Glycine max L) genotype and environment interaction effect on yield and other related traits. American Journal of Experimental Agriculture 3, 977-987.

Oerke EC, Dehne HW. 2004. Safeguarding production—losses in major crops and the role of crop protection. Crop Protection 23, 275-285.

Ortiz R, González R, Ponce M, Fernández C, Martínez J, Batista S, Creach I. 2004. Importancia de la localidad en el comportamiento de variedades de soya durante siembras de primavera en Cuba. Cultivos Tropicales 25, 67-72.

Ortiz R, Ponce M, Caballero A, Fé C. 2000. Evaluación de una colección de germoplasma de soya (Glycine max (L.) Merrill) en condiciones abióticas estresantes. Cultivos Tropicales 21, 67-72.

Oz M, Karasu A, Goksoy AT, Turan ZM. 2009. Interrelationships of agronomical characteristics in soybean (Glycine max) grown in different environments. International Journal of Agriculture and Biology 11, 85-88.

Padgette SR, Kolacz K, Delannay X, Re D, LaVallee B, Tinius C, Rhodes W, Otero Y, Barry G, Eichholtz D. 1995. Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Science 35, 1451-1461.

Peluzio JM, Miranda LP, Lopes L, Afférri FS, Colombo GA, Teixeira TJ, Ronery dos Santos G. 2012. Genetic divergence among soybean cultivars in irrigated lowland in the State of Tocantins. Ciência Rural 42, 395-400.

Ponce M, Ortiz R, Fé C, Moya C. 2002. Estudio comparativo de nuevas variedades de soya (Glycine max L. Merr) para las condiciones de primavera en Cuba. Cultivos Tropicales 23, 55-58.

Rahman M, Hossain M, Bell R. 2011. Plant density effects on growth, yield and yield components of two soybean varieties under equidistant planting arrangement. Asian Journal of Plant Science 10, 278-286.

Ramteke R, Singh D, Murlidharan P. 2012. Selecting soybean (Glycine max) genotypes for insertion height of the lowest pod, the useful trait for combine harvester. Indian Journal of Agricultural Sciences 82, 511-515.

Romero A, Ruz R, González M. 2013. Evaluation of seven soybean (Glycine max) cultivars under the edaphoclimatic conditions of the Majibacoa municipality, Las Tunas. Pastos y Forrajes 36, 459-463.

Seibel NF, Alves FP, de Oliveira MÁ, Leite RS. 2013. Brazilian Soybean Varieties for Human Use. Soybean- Bio- Active Compounds, 475-493.

Sharma S, Kaur M, Goysil R, Gil B. 2011. Physical Characteristics and Nutritional Composition of Some New Soybean (Glycine max (L.) Merrill) genotypes. Journal of Food Science and Technology 51, 551-557.

Toshiyuki O, Vello NA, Juliatti FC. 2002. Genetic analyses of agronomic traits in F4:3[8] and F5:3[8] progenies derived from eight-parent soybean crosses. Crop Breeding and Applied Biotechnology 2, 265-274.

Vivian R, Reis A, Kálnay PA, Vargas L, Ferreira ACC, Mariani F. 2013. Weed Management in Soybean—Issues and Practices. Soybean-Pest Resistance 47-84.

Walter KL, Strachan SD, Ferry NM, Albert HH, Castle LA, Sebastian SA. 2014. Molecular and phenotypic characterization of Als1 and Als2 mutations conferring tolerance to acetolactate synthase herbicides in soybean. Pest Management Science 70, 1831-1839.

Wang M, Hou W, Wang Q, Lam H, Han T. 2011. Enhancing salt tolerance of soybean roots by overexpression of GmNHX1. Soybean Science 30, 889-894.

Wilcox J. 2001. Sixty years of improvement in publicly developed elite soybean lines. Crop Science 41, 1711-1716.

Yu H, Li Y, Li X, Romeis J, Wu K. 2013. Expression of Cry1Ac in transgenic Bt soybean lines and their efficiency in controlling lepidopteran pests. Pest Management Science 69, 1326-1333.

Zhang XX, Tang YJ, Ma QB, Yang CY, Mu YH, Suo HC, Luo LH, Nian H. 2013. OsDREB2A, a rice transcription factor, significantly affects salt tolerance in transgenic soybean. PloS ONE 8, e83011.