Grapes post-harvest decaying process, associated fungal pathogens and their ecofriendly control by plant extracts and oils

Paper Details

Research Paper 01/10/2019
Views (279) Download (11)
current_issue_feature_image
publication_file

Grapes post-harvest decaying process, associated fungal pathogens and their ecofriendly control by plant extracts and oils

Syed Shamsullah, Muhammad Ibrahim, Muhammad Aslam, Muhammad Anayat Ullah, Muhammad Kamran, Sadam Husain
Int. J. Biosci.15( 4), 524-530, October 2019.
Certificate: IJB 2019 [Generate Certificate]

Abstract

Grapes (Vitis vinifera L.) are amongst widely consumed fruit in the world. In Pakistan, about 66 thousand tons of grapes are produced annually from an area of 78.30 thousand hectares. Grapes are highly perishable commodityduring transportation, storage, and marketing for general consumption and post-harvest losses are up to 16-23%. Numerous biotic and abiotic factors reduce the production and quality of grapes. In this study, samples of rotten grapes were collected from different fruit markets of Pishin (Balochistan) and Faisalabad (Punjab). The samples were subjected to isolate the fungal pathogens, responsible for the post-harvest decay of fruits. The fungal pathogen isolated were identified as Aspergillus flavus and A. carbonarius causing post-harvest decay of grape berries. The pathogenicity of the two isolated pathogens was evaluated ondifferent temperatures (5, 20, 30 & 40°C) on Thompson seedless variety of grapes. The temperature 40°C was found conducive for infection and proliferation of fungi. Five organic origin chemicals namely Neem, Castor and Clove oils, with concentrations of (500, 1000, 2000 ppm) for each oil and also Neem and Marigold Extracts with concentrations of (12.5, 25, 50%) of both extracts were used as antifungal agents. Among the tested organic compounds, Clove oil @ 2000 ppm was found better in delaying thedecay process of both fungal pathogens. The decay was reduced up to 50% as compared to control. This study indicates that post-harvest application of essential oils can potentially enhance the storage life of grapes prior to marketing.

VIEWS 22

Al-Zoreky, NS. 2009. Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. International journal of food microbiology 134, 244-248.

Amagase H, Petesch BL, Matsuura H, Kasuga S, Itakura Y. 2001. Intake of garlic and its bioactive components. The Journal of nutrition 131, 955S-962S.

Anjum Malik A, Ahmed N, Babita CH, Gupta P. 2016. Plant Extracts in Post-Harvest Disease Management of Fruits and Vegetables. A Review Journal of Food Process Technology 7, 592-2.

Anon. 1986. GRAS status of sulfating agents for use on fresh and frozen foods revoked. Fed. Regist 51, 25021.

Artés-Hernández F, Aguayo E, Artés F. 2004. Alternative atmosphere treatments for keeping quality of ‘autumn seedless’ table grapes during long-term cold storage. Postharvest Biology and Technology 31, 59-67.

Aujla KM, Shah NA, Ishaq M, Fraooq A. 2011. Postharvest losses and marketing of grapes in Pakistan. Sarhad Journal 27, 485-490.

Cabañes FJ, Accensi F, Bragulat MR, Abarca ML, Castellá G, Minguez S, Pons A. 2002. What is the source of ochratoxin A in wine? International Journal of Food Microbiology 79, 213-215.

Esteban A, Abarca ML, Bragulat MR, Cabañes FJ. 2004. Effects of temperature and incubation time on production of ochratoxin A by black Aspergilli. Research in Microbiology 155, 861-866.

FAO. 2017. Food and Agriculture Organization. http://faostat.fao.org/. (Assessed on July 07, 2017).

Gabler FM, Mansour M, Smilanick JL, Mackey BE. 2004. Survival of spores of R. stolonifer, A. niger, B. cinerea and A. alternata after exposure to ethanol solutions at various temperatures. Journal of applied microbiology 96, 1354-1360.

Gogoi RS, Baruah P, Nath SC. 1997 Antifungal activity of the essential oil of Litsea cubeba Pers. Journal of Essential Oils Research 9, 213-215.

Lee SH, Chang KS, Su MS, Huang YS, Jang HD. 2007. Effects of some Chinese medicinal plant extracts on five different fungi. Food control 18, 1547-1554.

López-Malo A, Barreto-Valdivieso J, Palou E, San Martín F. 2007. Aspergillus flavus growth response to cinnamon extract and sodium benzoate mixtures. Food Control 18,1358-1362.

Marin S, Velluti A, Ramos AJ, Sanchis V. 2004. Effect of essential oils on zearalenone and deoxynivalenol production by Fusarium graminearum in non-sterilized maize grain. Food Microbiology 21, 313-318.

Murthy SP, Sirsi M. 1957. Pharmacological studies on Melia azadirachta. Part I. Antibacterial, antifungal and antitubercular activity of neem oil and its fractions. In Symp. Utilization Indian Med. Pl., Lucknow p.55.

Nelson KE. 1979. Harvesting and handling California table grapes for market (Vol. 1913). UCANR Publications.

Odile C, Réjean B, Jacques L, Wendy MC. 2006. Agriculture and Agriculture Food Canada. Category. No. A52-74/2006E-PDF. ISBN 0, 662-43594-X.

Perrone G, Susca A, Cozzi G, Ehrlich K, Varga J, Frisvad JC, Samson RA. 2007. Biodiversity of Aspergillus species in some important agricultural products. Studies in mycology 59, 53-66.

Pezet R, Viret O, Perret C, Tabacchi R. 2003. Latency of B. cinerea Pers.: Fr. and biochemical studies during growth and ripening of two grape berry cultivars, respectively susceptible and resistant to grey mould. Journal of phytopathology 151, 208-214.

Stefanaki I, Foufa E, Tsatsou-Dritsa A, Dais P. 2003. Ochratoxin A concentrations in Greek domestic wines and dried vine fruits. Food Additives and Contaminants 20, 74-83.

Sukatta U, Haruthaithanasan V, Chantarapanont W, Dilokkunanant U, Suppakul P. 2008. Antifungal activity of clove and cinnamon oil and their synergistic against postharvest decay fungi of grape in vitro. Kasetsart Journal. Nature Science 42, 169-174.

Tripathi P, Dubey NK, Shukla AK. 2008. Use of some essential oils as post-harvest botanical fungicides in the management of grey mould of grapes caused by Botrytis cinerea. World Journal of Microbiology and Biotechnology 24, 39-46.

Xing Y, Xu Q, Li X, Che Z Yun J. 2012. Antifungal activities of clove oil against Rhizopus nigricans, A. flavus and Penicillium citrinum in-vitro and in wounded fruit test. Journal of food safety 32, 84-93.

Zoffoli JP, Latorre BA, Naranjom P. 2008. Hairline, a postharvest cracking disorder in table grapes induced by sulfur dioxide. Postharvest Biology and Technology 47, 90-97.