International network for natural sciences – research journal
  • mendeley icon
  • linkedin icon
  • google plus icon
  • twitter icon
  • google scholar icon
  • facebook icon

A potential Antimicrobial, Extracellular Enzymes, and Antioxidants resource: Endophytic fungi associated with medicinal plants

By: Eman A. Attia, Bhim P. Singh, Kavya Dashora, Ahmed M. Abdel-Azeem

Key Words: Medicinal plants, Prospective isolates, Antibacterial, Antifungal, Antioxidant, Industrial enzymes, Saint Katherine, Egypt.

Int. J. Biosci. 17(1), 119-132, July 2020.

DOI: http://dx.doi.org/10.12692/ijb/17.1.119-132

Certification: ijb 2020 0008 [Generate Certificate]

Abstract

This study aimed for the production of antimicrobial, extracellular enzymes and antioxidants by endophytic teleomorphic Ascomycota associated with medicinal plants. A total of eleven teleomorphic species were isolated from four medicinal plant species. Chaetomium grande and Sordaria fimicola were the most frequently isolated species and represented by 12 (Chg1-Chg12) and 7 (Sf1-Sf7) isolates respectively. The minimum inhibitory concentration (MIC) of all the isolates was determined against nine reference strains of bacteria and fungi. Effectiveness of 100-300 µg/ ml DEMSO then in H2O of the ethyl acetate fractions of the most effective two isolates Chg5 and Sf3 on the tested reference strains revealed a different inhibitory effecst. Saturated disc of Streptomycin and Rifampin (0.165 mg/ml) were used for bacteria and amphotericin B and fluconazole were used for yeasts and fungi as a positive control. Enzymatically, Chg5 isolate considered as a resource of amylase, cellulase, protease, lipase, and chitinase. However, Sf3 isolates considered as a resource of amylase, laccase, and chitinase out of six screened enzymes. Total phenolics (TP), total flavonoids (TF) and antioxidant activity of the Sf3 and Chg5 extracs were measured. The TP values were expressed as milligram gallic acid equivalents per gram of dry extract of Sf3 and Chg5, which equal to 53.9±0.35 and 97.9±0.48 respectively. TF present in both Sf3 and Chg5 isolates extracts with values equal to 2.44±0.01 and 7±0.05 respectively expressed as routine equivalents. In vitro, the antioxidant activity of the extracts was investigated using DPPH radical-scavenging assay, and equal to 0.06% and 0.39% respectively in the extract of both taxa.

| Views 78 |

| Views 78 |

A potential Antimicrobial, Extracellular Enzymes, and Antioxidants resource: Endophytic fungi associated with medicinal plants

Abdel-Azeem AM, Blanchette RA, Held BW. 2018b. New record of Chaetomium grande Asgari & Zare (Chaetomiaceae) for the Egyptian and African mycobiota. Phytotaxa 343(3), 283-288.

Abdel-Azeem AM, Omran MA, Mohamed RA. 2018a. Evaluation of the curative probability of bioactive metabolites from endophytic fungi isolated from some medicinal plants against paracetamol-induced liver injury in mice. LAP LAMBERT Academic Publishing. ISBN: 978-613-9-89820-6.

Abdel-Azeem AM, Salem FM. 2012. Biodiversity of laccase producing fungi in Egypt. Microsphere 3(6), 900–920.

Abdel-Azeem AM, Salem FM, Mohamed HM, Rashad HM, Mohamed RM, Khalil WF. 2012. Bioprospecting of Egyptian fungi for ecological and medical applications. TWAS-ARO 8th meeting, Bibilotheca Alexandrina, December 30-31. Availableat:

http://www.bibalex.go.eg/CSSP/Presentations/Attachments/Fatma%20Salem/play.htm

Abdel-Azeem AM, Zaki SM, Khalil WF,Makhlouf NA, Farghaly LM. 2016. Anti-rheumatoid activity of secondary metabolites produced by endophytic Chaetomium globosum. Frontiers in Microbiology 7(1477), 1-11.

Aly AH, Edrada-Ebel R, Wray V, Muller WEG, Kozytska S, Hentschel U. 2008. Bioactive metabolites from the endophytic fungus Ampelomyces sp. Isolated from the medicinal plant Urospermum picroides. Photochemistry 69, 1716–1725.

http://dx.doi.org/10.1016/j.phytochem.02.013.

Amirita A, Sindhu P, Swetha J, Vasanthi NS, Kannan KP. 2012. Enumeration of endophytic fungi, from medicinal plants and screening of extracellular enzymes. World Science and Technology 2, 13-9.

Ananda K, Pavithra LN, Sathish L. 2012. Antimicrobial and enzyme activity of Endophytic fungi isolated from Tulsi. Journal of Pharmaceutical and Biomedical Sciences 16, 1-6.

Arenz B, Blanchette R. 2011. Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo Dry Valleys. Soil Biology and Biochemistry 43, 308–315.

https://doi.org/10.1016/j.soilbio.2010.10016

Bashyal BP, Wijeratne EM, Faeth SH, Gunatilaka AA. 2005. Globosumones A-C, cytotoxic orsellinic acid esters from the Sonoran desert endophytic fungus Chaetomium globosum. Journal of Natural Products 68, 724–728.

http://dx.doi.org/10.1021/np058014.

Bilal  S, Ali  L, Khan  A.L, Shahzad  R, Asaf  S, Imran  M, Kang  SM, Kim  SK, Lee IJ. 2018. Endophytic fungus Paecilomycesformosus LHL 10 producessesterterpenoidYW3548andcyclicpeptidethatinhibiturease and alpha-glucosidase enzyme activities. Archives of Microbiology 200, 1493–1502. [Cross Ref].

Blanchette RA, Held BW, Abdel-Azeem AM. 2017. New record of Chaetomium iranianum MF787598 (Chaetomiaceae) for the Egyptian and African mycobiota. Microbial Biosystems Journal 2(2), 6–9.

Bouillant ML, Bernillon J, Favrebonvin J, Salin N. 1989. New hexaketides related to sordariol in sordaria-macrospora. Z Naturforsch C 44, 719–723.

Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, Albert H, Robison R, Condron MAM, Teplow DB, Stevens D, Yaver D. 2002. Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562 endophytic on Kennedia nigriscans. Microbiology 148(9), 2675–2685.

Chandra P, Arora DS. 2009. Antioxidant activity of fungi isolated from soil of different areas of Punjab, India. Journal of Applied and Natural Science 1, 123-128.

Chang C, Yang M. 2002.  Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis 10, 178-182.

Chareprasert S, Piapukiew J, Thienhirun S, Whalley A, Sihanonth P. 2006. Endophytic fungi of teak leaves Tectona grandis L. and rain tree leaves Samanea saman Merr. World Journal of Microbiology & Biotechnology 22, 481–486.

Chávez R, Fierro F, García-Rico RO, Vaca I. 2015. Filamentous fungi from extreme environments as a promising source of novel bioactive secondary metabolites. Frontiers in Microbiology 6, 903. Published Sep 9.

http://dx.doi.org/10.3389/fmicb.00903.

Cohen SD. 2006. Hosts electivity and genetic variation of Discula umbrinella isolates from twooak species:analyses of intergenic equences of ribosomal DNA. Microbial Ecology 52, 463–469.

http://dx.doi.org/10.1007/s00248-006-9073-5.

Davoli P, Engel G, Werle A, Sterner O, Anke T. 2002. Neosordarin and hydroxysordarin, two new antifungal agents from Sordaria araneosa. Journal of spacer regions Antibiotics 55, 377–382.

Demain AL. 2014. Importance of microbial natural products and the need to revitalize their discovery. Journal of Industrial Microbiology and Biotechnology 41, 185–201.

Ding G, Song YC, Chen JR, Xu C, Ge HM, Wang XT. 2006. Chaetoglobosin U, acytochalasan alkaloid from endophytic Chaetomium globosum IFB-E019. Journal of Natural Products 69, 302–304.

Domsch KH, Gams W, Anderson TH. 2007. Compendium of Soil Fungi (2. ed., ta). Eching: IHW-Verl.

Ellis MB. 1976. More dematiaceous hyphomycetes. Kew, Eng: Commonwealth Mycological Institute.

Ferreira MC, Vieira  MLA, Zani  CZ, Alves TMA, Sales Junior PA, Murta SMF, Romanha AJ,  Gil LHVG, Carvalho AGO, Zilli JE, Vital MJS, Rosa CA, Rosa LH. 2015. Molecular phylogeny, diversity, symbiosis and discover of bioactive compounds of endophytic fungi associated with the medicinal Amazonian plant Carapa guianensis Aublet (Meliaceae). Biochemical Systematics and Ecology 59, 36- 4.

Fujimoto H, Fujimaki T, Okuyama E, Yamazaki M. 1999. Immunomodulatory constituents from an ascomycete, Microascus tardifaciens. Chemical and Pharmaceutical Bulletin (Tokyo) 47, 1426-1432.

Fujimoto H, Sumino M, Okuyama E, Ishibashi M. 2004. Immunomodulatory constituents from an ascomycete, Chaetomium seminudum. Journal of Natural Products 67, 98–102.

http://dx.doi.org/10.1021/np0302201.

Guarro J, Gene J, Stchigel AM, Figueras MJ. 2012. Atlas of soil ascomycetes. Issue 10 of CBS biodiversity series, Holland.

Hameed IH, Hussein HJ, Kareem MA, Hamad NS. 2015. Identification of five newly described bioactive chemical compounds in methanolic extract of Mentha viridis by using gas chromatography – mass spectrometry (GC-MS). Journal of Pharmacognosy and Phytotherapy 7, 107–125.

Hanafi Y, Abdel-Wahab M. 2000. Wild medicinal plants in Sinai. Arabian Gulf of Est. Egypt. (In Arabic), p 337.

Hauser D, Sigg HP. 1971. Isolierung und A babu von Sordarin. Helvetica Chimica Acta 54, 1187-1190.

Hoffman M, Mayer SG, Strobel GA, Hess WM, Sovocool GW, Grange AH, Kelley-Swift EG. 2008. Purification, identification and activity of phomodione, a furandione from endophytic Phoma species. Phytochemical 69, 1049–56.

Ibrahim  SRM,  Mohame  GA, Al Haidari RA, El-Kholy  AA, Zayed  MF, Khayat MT. 2018. Biologically active fungal depsidones: Chemistry, biosynthesis, structural characterization, and bioactivities. Fitoterapia 129, 317–365. [Cross Ref].

Isham  CR, Tibodeau JD, Jin W, Xu R, Timm MM, Bible KC. 2007. Chaetocin:a promising new antimyeloma agent within vitro and in vivo activity mediated via imposition of oxidative stress. Blood 109, 2579–2588.

http://dx.doi.org/10.1182/blood-07-027326.

Jiao W, Feng Y, Blunt JW, Cole AL. Munro MH. 2004. Chaetoglobosins Q, R, and T, three further new metabolites from Chaetomium globosum. Journal of Natural Products 6, 1722–1725.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton  S, Cooper  A, Markowitz  S, Duran  C, Thierer T, Ashton  B, Mentjies P, Drummond A. 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.

Kirk PM. 2018. Index Fungorum database. Available from: (accessed 7 August 2018).

http://www.indexfungorum.org/names/Names.asp

Klich MA. 2002. Identification of common Aspergillus species. Centralbureau voor Schimmelcultures, Utrecht, Netherlands, p 116.

Kobayashi M, Kanasaki R, Sato I, Abe  F, Nitta K, Ezaki M. 2005. FR207944, an antifungal antibiotic from Chaetomium sp. 217I. Taxonomy, fermentation, and biological properties Bioscience. Biotechnology Biochemistry 69, 515–521.

http://dx.doi.org/10.1271/bbb.69.515.

Kouker G, Jaeger KE. 1987.  Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbial 53, 211-3.

Krishnan A, Alias SA, Wong CMVL. 2011. Extracellular hydrolase enzyme production by soil fungi from King George Island, Antarctica Polar Biology 39, 65-76.

Kumar A, Chattopadhaya S. 2007. DNA damage protecting activity and antioxidant potential of Pudina extracts. Food Chemistry 100, 1377-1384.

Leslie JF, Summerell  BA. 2006. The Fusarium laboratory manual. 1st ed. Ames, Iowa: Blackwell Publishing.

Liu X, Dong M, ChenX, Jiang M, Lv X, Zhou J. 2008. Antimicrobial activity of an endophytic Xylaria sp. YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Applied Microbiology and Biotechnology 78, 241–247.

http://dx.doi.org/10.1007/s00253-007-1305-1.

Lobo V,   Patil A,  Phatak A,    Chandra N.  2010. Free radicals, antioxidants and functional foods: Impact on human health Pharmacognosy Reviews Jul-Dec; 4(8), 118–126.

http://dx.doi.org/10.4103/0973-7847.709.02

Maria GL, Sridhar KR, Raviraja NS. 2005. Antimicrobial and enzyme activity of mangrove endophytic fungi of southwest coast of India. Journal of Agricultural Technology 1, 67–80.

Mathew S, Abraham TE. 2006. Studies on the antioxidant activities of cinnamon (Cinnamomum Verum) bark extracts, through various in vitro models. Food Chemistry 94(4), 520-528.

Moustafa AF, Abdel-Azeem AM. 2011. An annotated check-list of Ascomycota reported from soil and other terricolous substrates in Egypt. Journal of  Basic and Applied Mycology   2, 1-27.

Moukette BM, Pieme CA, Njimou JR, Biapa CPN, Marco B, Ngogang JY. 2015. In vitro antioxidant properties, free radicals scavenging activities of extracts and polyphenol composition of a nontimber forest product used as spice: Monodora myristica Biological Research 48(1), 15.

Newman DJ, Cragg GM. 2007. Natural products as sources of new drugs over the last 25 years. Journal of Natural Products 70, 461–477.

http://dx.doi.org/10.1021/np068054v.

Oduntan AO, Akinfasoye JA, Fasoyiro SB. 2017. Ascorbic Acid, Total Phenolic, Flavonoid and Antioxidant Activity of Two Cultivars of Basella alba. Food Science and Technology 5(4), 92-96.

Ogundare AO, Adetuyi FC, Akinyosoye FA. 2006. Antimicrobial activities of Vernonia tenoreana. African Journal of Biotechnology 5(18), 1663–1668.

Okada H, Kamiya S, Shina Y, Suwa H, Nagashima M, Nakajima S, Shimokawa H, Sugiyama E, Kondo H, Kojiri K, Suda H. 1998. BE-31405, a new antifungal antibiotic produced by Penicillium minioluteum. I. Description of producing organism, fermentation isolation, physico-chemical and biological properties. Journal of Antibiotics 51, 1081–1086.

Oliveira I, Sousa A, Ferreira IC, Bento A, Estevinho L, Pereira JA. 2008.  Total phenols, antioxidant potential and antimicrobial activity of walnut (Juglans regia L.) green husks. Food and Chemical Toxicology 46(7), 2326-31.

http://dx.doi.org/10.1016/j.fct.2008.03.017.

Pandey B, Ghimire PA, grawal VP. 2004. Studies on the antibacterial activity of the actinomycetes isolated from the Khumbu region of Nepal. International Journal of Biological Sciences 23, 44–53.

Pavithra N, Sathish L, Kulal A. 2012. Antimicrobial and enzyme activity of endophytic fungi isolated from tulsi. Journal of Pharmaceutical and Biomedical Sciences 16(16), 1-6.

Petrini O. 1991. Fungal endophytes of tree leave. In:

Andrews JH, Hirano SS, editors. Microbial ecology of leaves. New York: Springer. 1, 79-197.

Pitt JI. 1979. The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. London ; New York: Academic Press.

Salem FM, Abdel-Azeem AM. 2014. Screening of anticancer metabolites produced by endophytic fungi. LAP LAMBERT Academic Publishing. ISBN 98-3-659-53697-7.

Schneider G, Anke H, Sterner O. 1995. Xylarin, an antifungal Xylaria metabolite with an unusual tricyclic uronic acid moiety. Natural Products Letters 7, 309–316.

Selim  KA, El-Beih AA, Abdel-Rahman TM, El-Diwany AI. 2014. Biological evaluation of endophytic fungus, Chaetomium globosum JN711454, as potential candidate for pimroving drug discovery. Cell Biochemical and Biophysical Research Communications 68, 67–82.

http://dx.doi.org/10.1007/s12013-013-9695-4.

Selim  KA, El-Beih AA, Abdel-RahmanTM, El-Diwany AI. 2016. High expression level of antioxidants and pharmaceutical bioactivities of endophytic fungus Chaetomium globosum JN711454. Preparative biochemistry & biotechnology. 46, 131-140.

Sharaf EF, El-Sarrany AEQ, El-Deeb M. 2012. Biorecycling of shrimp shell by Trichoderma viride for production of antifungal chitinase. African Journal of Microbiology Researcher 6(21), 4538-4545.

Shehab NG, Abu-Gharbieh E, Bayoumi FA. 2015. Impact of phenolic composition on hepatoprotective and antioxidant efects of four desert medicinal plants. BMC Complement Altern Med 15(1), 401.

Shiban MS, Al-Otaibi MM. 2012. Antioxidant Activity of Pomegranate (Punica granatum L.) Fruit

Peels. Food and Nutrition Sciences 3, 991-996.

Simmons  EG. 2007. Alternaria: an Identification manual. CBS biodiversity series 6. Utrecht: Centraalbureau voor Schimmelcultures.

Souza ADL, Rodrigues-Filho E, Souza AQL, Pereira JO, Calgarotto AK, Maso V. 2008. Koninginins, phospholipase A2 inhibitors from endophytic fungus Trichoderma Koningii Toxicon 51, 240–250.

http://dx.doi.org/10.1016/j.toxicon.09.009.

Stierle A, Strobel G, Stierle D. 1993. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew science 260, 214-216.

Strobel G, Daisy B. 2003. Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews 67(4), 491–502.

https://doi.org/10.1128/MMBR.67.4.491-502.

Valgas C, de Souza SM, Smânia EFA, Smânia AJR. 2007. Methods to determine antibacterial activity of natural products. Brazilian Journal of Microbiology 38(2), 369–380.

http://dx.doi.org/10.1590/S151783822007000200034.

Wang  XY, Yan  X, Fang  MJ, Wu  Z, Wang  D, Qiu  YK. 2017.  Two new cytochalasan derivatives from Chaetomium globosum SNSHI-5, a fungus derived from extreme environment. Natural Product Research 31, 1669–1675. [CrossRef] [PubMed].

Weber RWMeffert AAnke HSterner O. 2005.  Production of sordarin and related metabolites by the coprophilous fungus Podospora pleiospora in submerged culture and in its natural substrate. Mycological Research 109(5), 619-26.

Zhao  J, Zhou L, Wang  J, Shan T, Zhong  L, Liu X. 2010. Endophytic fungi for producing bioactive compounds originally from their host plants, in Current Research, Technology and Education Topics in Applied Microbiology Microbial Biotechnology, ed. M. A. Vilas (Badajoz: Formatex Research Center 567–576.

Zhangb Q, Li HQ, Zong SC, Gao JM, Zhang AL. 2012. Chemical and bioactive diversities of the genus Chaetomium secondary metabolites. Mini-Reviews in Medicinal Chemistry 12, 127–148. [Cross Ref] [Pub Med].

Eman A. Attia, Bhim P. Singh, Kavya Dashora, Ahmed M. Abdel-Azeem.
A potential Antimicrobial, Extracellular Enzymes, and Antioxidants resource: Endophytic fungi associated with medicinal plants.
Int. J. Biosci. 17(1), 119-132, July 2020.
https://innspub.net/ijb/potential-antimicrobial-extracellular-enzymes-antioxidants-resource-endophytic-fungi-associated-medicinal-plants/
Copyright © 2020
By Authors and International Network for
Natural Sciences (INNSPUB)
https://innspub.net
brand
innspub logo
english language editing
  • CALL FOR PAPERS
    CALL FOR PAPERS
    Publish Your Article
  • CALL FOR PAPERS
    CALL FOR PAPERS
    Submit Your Article
INNSPUB on FB
Email Update