Welcome to International Network for Natural Sciences | INNSpub

In vitro antioxidant, antibiofilm, anticholinesterase andanti-tyrosinase activities of Senecio hoggariensis hydro- methanolic extract

Research Paper | March 1, 2022

| Download 24

Yasmine Arab, Amar Zellagui, Ozgur Ceylan, Ozge Tokul Olmez, Mehmet Emin Duru, Mehmet Ozturk

Key Words:

Int. J. Biosci.20( 3), 161-171, March 2022

DOI: http://dx.doi.org/10.12692/ijb/20.3.161-171


IJB 2022 [Generate Certificate]


This study was carried out to identify the phenolic profile of hydro-methanolic extract from an endemic Algerian species Senecio hoggariensis and to investigate their health properties in particular with respect to antioxidant, anticholinesterase, anti-tyrosinase, antimicrobial and antibiofilm activities. Using high-performance liquid chromatography (HPLC-DAD) techniques, nine compounds were identified: chlorogenic acid, curcumin, 4-hydroxylresorkinol, rutin, elagic acid, protocatechic acid, 4-hydroxy benzaldehid, pyrocatechol and 4-oh-benzoic acid. Antioxidant properties were determined using:DPPH (2,2′-diphenyl-1-picrylhydrazyl radical), ABTS•+ (2, 2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid radical cation)), β-carotene linolic acid,CUPRAC (cupric reducing antioxidant capacity) and metal chelating assays. The extract showed mild activity compared to standards. The ability of the extract to inhibit enzymes:  acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase was investigated. The studied extract showed relatively moderate tyrosinase inhibitory activity. Also, it inhibited the development of all tested microorganisms; the highest antibiofilm activity was 51.08 % against Candida albicans ATCC 10239 biofilm production at 10 mg/ml concentration. The findings indicate that S.hoggariensis may be an alternative source of content in the fight against bacterial infections.


Copyright © 2022
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

In vitro antioxidant, antibiofilm, anticholinesterase andanti-tyrosinase activities of Senecio hoggariensis hydro- methanolic extract

Adefegha SA, Oboh G. 2016. Antioxidant and inhibitory properties of Clerodendrum volubile leaf extracts on key enzymes relevant to non-insulin dependent diabetes mellitus and hypertension. Journal of Taibah University Medical Sciences 10(4), 521- 533. https://doi.org/10.1016/j.jtusci.2015.10.008

Ajiboye BO, Ojo OA, Okesola MA, Ayodele JA, Akinyemi JA, Talabi JY, Idowu OT, Fadaka AO, Boligon A A, Anraku de Campos MM. In vitro antioxidant activities and inhibitory effects of phenolic extract of Senecio biafrae (Oliv and Hiern) against key enzymes linked with type II diabetes mellitus and Alzheimer’s disease.Food Science & Nutrition 6(7), 1803-1810. https://doi.org/10.1002/fsn3.749.

Alalwan H, Rajendran R, Lappin DF, Combet  E, Shahzad M. 2017. Robertson D. The anti-adhesive effect of curcumin on Candida albicans biofilms on denture materials. Frontiers in Microbiology 20(8), 659. https://doi.org/doi.org/10.3389/fmicb.2017.00659.

Albayrak S, Aksoy A, Yurtseven L, Yaşar AA. 2014. Comparative study on phenolic components and biological activity of some Senecio species in Turkey. Journal of Pharmacy and Pharmacology 66(11), 1631- 40. https://doi.org/10.1111/jphp.12288.

Al-kafaween MA,  Hilmi  ABM, Jaffar N,  Al-Jamal HAN,  Zahri MK,  Jibril FI. 2020. Antibacterial and antibiofilm activities of Malaysian Trigona honey against Pseudomonas aeruginosa ATCC 10145 and Streptococcus pyogenes ATCC 19615.Jordan Journal of Biological Sciences 13(1), 69-76. https://www.researchgate.net/publication/333489094.

Alqahtani AS, Herqash RN, Noman OM, Nasr AF, Alyhya N, Anazi SH, Farooq M, Ullah R. 2020. Invitro antioxidant, cytotoxic activities and phenolic profile of Senecio glaucus from Saudi Arabia.Evidence-Based Complementary and Alternative Medicine 2020, 8875430. https://doi.org/10.1155/2020/8875430

Apak R, Guclu K, Ozyurek M,  Karademir SE. 2004. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their Cupric ion reducing capability in the presence of neocuproine: CUPRAC Method. Journal of Agricultural and Food Chemistry 52(26), 7970-81. https://doi.org/10.1021/jf048741x.

Barros L, Duenas M, Ferreira IC, Baptista P, Santos-Buelga C. 2009. Phenolic acids determination by HPLC–DAD–ESI/MS in sixteen different Portuguese wild mushrooms species. Food and Chemical Toxicology 47(6), 1076-1079. https://doi.org/10.1016/j.fct.2009.01.039.

Blois M. 1958. Antioxidant Determinations by the use of a stable free radical. Nature 26, 1199-200. https://doi.org/10.1038/1811199a0.

Brahmi F, Hauchard D, Guendouze N, Madani K, Kiendrebeogo M, Kamagaju L, Stévigny C, Chibane M, Duez P. 2015. Phenolic composition, in vitro antioxidant effects and tyrosinase inhibitory activity of three Algerian Mentha species: M. spicata (L.), M. pulegium (L.) and M. rotundifolia (L.) Huds (Lamiaceae).Industrial Crops and Products 74, 722-730. https://doi.org/10.1016/j.indcrop.2015.04.038.

Chang TS. 2009. An updated review of tyrosinase inhibitors. International Journal of Molecular Sciences 10(6), 2440-2475. https://doi.org/10.3390/ijms10062440.

Decker EA, Welch B. 1990. Role of ferritin as a lipid oxidation catalyst in muscle food.Journal of Agricultural and Food Chemistry 38, 674-677. https://doi.org/10.1021/jf00093a019.

Dehpour AA, Ibrahimzadeh MA, Seyed Fazel N, Seyed Mohammad N. 2009. Antioxidant activity of the methanol extract of Ferula assafoetida and its essential oil composition. Grasas Y Aceites 60(4), 405-412 https://doi.org/10.3989/gya.010109.

Ellman GL, Courtney KD, Andres V, Featherston RMA. 1961. New and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology 7, 88-95. https://doi.org/10.1016/0006-2952(61)90145-9.

Florian CC. 2015. Effects of crude plant extracts of Senecio calvus on biofilm formation of Pseudomonas aeruginosa and Escherichia coli. Annals of West University of Timişoara Series of Biology XVIII(1), 13-18. https://www.ingentaconnect.com/content/doaj/15823830/2015/00000018/00000001/art00003.

Fujii H, Nakai K, Fukagawa M. 2011. Role of oxidative stress and indoxyl sulfate in progression of cardiovascular disease in chronic kidney disease. Therapeutic Apheresis and Dialysis 15(2), 125-128. https://doi.org/10.1111/j.1744-9987.2010.00883.x.

Generalic Mekinic I, Blazevic I, Mudnic I,  Burcul F, Grga M, Skroza D, Jerčić I, Ljubenkov I, Boban M, Miloš M, Katalinić V. 2016. Sea fennel (Crithmum maritimum L): phytochemical profile, antioxidative, cholinesterase inhibitory and vasodilatory activity. Journal of Food Science and Technology 53(7), 3104-3112. https://doi.org/10.1007/s13197-016-2283-z.

Jaiswal S, Mishra P. 2018. Antimicrobial and antibiofilm activity of curcumin-silver nanoparticles with improved stability and selective toxicity to bacteria over mammalian cells. Medical Microbiology and Immunology 207(1), 39-53. https://doi.org/10.1007/s00430-017-0525-y.

Kaufmann D, Dogra AK, Tahrani A, Herrmann F, Wink M. 2016. Extracts from traditional Chinese medicinal plants inhibit acetylcholinesterase, a known Alzheimer’s disease target. Molecules 21(9), 1161. https://doi.org/10.3390/molecules21091161.

Khatib S, Nerya O, Musa R, Shumel M, Tamir S, Vaya J. 2005. Chalcones as potent tyrosinase inhibitors: The Importance of 2,4-disubstituted resorcinol moiety.Bioorganic & Medicinal Chemistry 13(2), 433-441. https://doi.org/10.1016/j.bmc.2004.10.010.

Lebrun  JP. 1981. Les bases floristiques des grandes divisions chorologiques de I’Afrique sëche. Étude Botanique, No 7. Maisons-Alfort: IEMVT.

Li HB, Wong CC, Cheng KW, Chen F. 2008. Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT –41(3), 385-390. https://doi.org/10.1016/j.lwt.2007.03.011.

Loizzo MR, Statti GA, Tundis R, Conforti F, Bonesi M, Autelitano G, Houghton  PJ, Miljkovic-Brake A, Menichini F. 2004. Antibacterial and antifungal activity of Senecio inaediquans DC and Senecio vulgaris L.Phytotherapy Research 18(9), 777-779. https://doi.org/10.1002/ptr.1562.

Magesh H, Kumar A, Alam A, Priyam Sekar U, Sumantran V, Vaidyanathan R. 2013. Identification of natural compounds which inhibit biofilm formation in clinical isolates of  Klebsiella pneumoniae. Indian Journal of Experimental Biology 51(9), 764-72.PMID:24377137.

Maghsoudi S, Adibi H, Hamzeh M, Ashrafi-Kooshk MR, RezaeiTavirani M, Khodarahmi R. 2013. Kinetic of mushroom tyrosinase inhibition by benzaldehyde derivatives. Journal of Reports in Pharmaceutical Sciences 2(2), 156-164. https://www.jrpsjournal.com/article.asp?issn=2322-1232;year=2013;volume=2;issue=2;spage=156;epage=164;aulast=Maghsoudi;type=0.

Martins N, Barros L, Henriques  M, Silva S, Ferreira IC.2015. Activity of phenolic compounds from plant origin against Candida species.Industrial Crops and Products 74, 648- 670. https://doi.org/10.1016/j.indcrop.2015.05.067.

Merritt JH, Kadouri DE, O’Toole GA. 2005. Growing and analyzing static biofilms. Current Protocols in Microbiology 0(1), 1B.1.1-1B.1.17 https://doi.org/10.1002/9780471729259.mc01b01s00.

Miller HE. 1971. A simplified method for the evaluation of antioxidants. Journal of the American Oil Chemists’ Society 48,91-91. https://doi.org/10.1007/BF02635693.

Mohamed AS. 2015. Phytochemical and biological study of (Senecio glaucus subsp. coronopifolius) (Maire) c. alexander growing in Egypt. Azhar. Journal of Pharmaceutical Sciences 52(2), 283-298. https://doi.org/10.21608/AJPS.2015.12566.

Namasivayam SK, Arasu S, Kumar K, Deepak K. 2013. Anti-Biofilm Effect of Biogenic Silver Nanoparticles Coated Medical Devices Against Biofilm of Clinical Isolate of Staphylococcus Aureus. The Journal of medical research 13(3), 1-7. https://doi.org/10.17406/gjmra2249-4618.

Onsare JG , Arora DS. 2014. Antibiofilm potential of flavonoids extracted from Moringaoleifera seed coat against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Journal of Applied Microbiology 118(2), 313-25. https://doi.org/10.1111/jam.12701.

Orhan IE, Tosun F, Skalicka-Woźniak K. 2016. Cholinesterase and tyrosinase inhibitory and antioxidant potential of randomly selected Umbelliferous plant species and the chromatographic profile of Heracleum platytaenium Boiss and Angelica sylvestris L. var. Sylvestris. Journal of the Serbian Chemical Society 81(4), 357-368. https://doi.org/10.2298/JSC150902017O.

Öztürk M, Tel G, Öztürk FA, Duru ME. 2014. The cooking effect on two edible mushrooms in Anatolia: Fatty acid composition, total bioactive compounds, antioxidant and anticholinesterase activities.Records of Natural Products 8(2), 189-194. https://www.researchgate.net/publication/267036575.

Pham-Huy LA, He H, Pham-Huy C. 2008. Free radicals, antioxidants in disease and health. International Journal of Biomedical Science 4(2), 89-96.DOI:PMC3614697.

Pinho E, Ferreira IC, Barros L, Carvalho  AM, Soares G, Henriques M. 2014. Antibacterial potential of north eastern Portugal wild plant extracts and respective phenolic compounds. BioMed Research International 2014, 814590. https://doi.org/10.1155/2014/814590.

Ragaa MAM, Nabiel AMS.1981. Flavonoids of three local Senecio species. Phytochemistry 20(5), 1180-1181. https://doi.org/10.1016/0031-9422(81)83066-X.

Rana S, Bhawal S, Kumari A, Kapila S, Kapila R. 2020. PH-dependent inhibition of AHL-mediated quorum sensing by cell-free supernatant of lactic acid bacteria in Pseudomonas aeruginosa PA01. Microbial Pathogenesis 142, 104-105. https://doi.org/10.1016/j.micpath.2020.104105.

Re R, Pellegrini N, Proteggente A, Pannala A, Yang  M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay.Free Radical Biology and Medicine 26(9-10), 1231-7. https://doi.org/10.1016/S0891-5849(98)00315-3.

Sabudak T, Ozturk M, Goren AC,  Kolak U, Topçu G. 2009. Fatty Acids and other lipid Composition of five Trifolium Species with antioxidant activity. Pharmaceutical Biology 47, 137-141. https://doi.org/10.1080/13880200802439343

Senol FS, Orhan I, Yilmaz G, Ciçek M, Sener B. 2010. Acetylcholinesterase, butyrylcholinesterase and tyrosinase inhibition studies and antioxidant activities of 33 Scutellaria L. taxa from Turkey. Food and Chemical Toxicology 48(3), 781-788. https://doi.org/10.1016/j.fct.2009.12.004.

Singh D, Sati SC, Sati MD. 2018. Antioxydant activity of Senecio chrysanthemoides extracts. World Journal of Pharmaceutical 7(18), 1355-1361. https://doi.org/10.21608/AJPS.2015.12566.

Tel-Çayan G, Deveci E, Çayan F, Duru ME. 2018. Comparative assessment of phytochemical composition, antioxidant and anticholinesterase activities of two Basidiomycota Truffle Fungi from Turkey. Marmara Pharmaceutical Journal 22(1), 59-65. https://doi.org/10.12991/mpj.2018.41.

Tel-Çayan G, Öztürk M, Duru ME, Rehman MU, Adhikari A, Türkoglu A, Choudhary MI. 2015. Phytochemical investigation, antioxidant and anticholinesterase activities of Ganoderma adspersum. Industrial Crops and Products 76, 749-754. https://doi.org/https://doi.org/10.1016/j.indcrop.2015.07.042.

Tel-Çayan G, Öztürk M, Duru ME, Doğan B, Harmandar M. 2013. Fatty Acid Composition, Antioxidant, Anticholinesterase and Tyrosinase Inhibitory Activities of Four Serratula Species from Anatolia. Records of natural products 7(2), 86-95.    https://doi.org/10.1016/j.indcrop.2015.07.042.

Teow SY, Liew K, Ali SA, Khoo ASB, Peh SC. 2016. Antibacterial action of curcumin against Staphylococcus aureus: a brief review. Journal of Tropical Medicine 2016, 2853045. https://doi.org/doi.org/10.1155/2016/2853045.

Tidjani S, Okusa PN, Zellagui A, Banuls LMY, Stévigny C, Duez P, Rhouati S.  2013. Analysis of pyrrolizidine alkaloids and evaluation of some biological activities of Algerian Senecio delphinifolius (Asteraceae). Natural Product Communications 8(4), 439-440.PMID: 23738446.

Tundisa R, Menichinia F, Loizzoa MR, Bonesia M, Solimene U, Menichinia F. 2012. Studies on the potential antioxidant properties of Senecio stabianus Lacaita (Asteraceae) and its inhibitory activity against carbohydrate-hydrolysing enzymes. Natural Product Research 26(5), 393-404. https://doi.org/10.1080/14786419.2010.488233.

Tyagi P, Singh M, Kumari H, Kumari A, Mukhopadhyay K.  2015. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLOS One 10(3), e0121313. https://doi.org/10.1371/journal.pone.0121313.

Upadhyay R, Mohan Rao L. 2013. An outlook on chlorogenic acidsoccurrence, chemistry, technology and biological activities. Critical Reviews in Food Science and Nutrition 53(9), 968- 84. https://doi.org/10.1080/10408398.2011.576319.

Vinson JA, Su X, Zubik L, Bose P.  2001. Phenol antioxidant quantity and quality in foods: fruits.Journal of Agricultural and Food Chemistry 49(11), 5315-21. https://doi.org/10.1021/jf0009293.

Yang Y, Zhao L, Wang YF, Chang ML, Huo CH, Gu YC, Shi QW, Kiyota H. 2011. Chemical and pharmacological research on plants from the genus Senecio. Chemistry & Biodiversity 8(1), 13-72. https://www.researchgate.net/publication/49778500