In vitro comparative evaluation of the anthelmintic effects of ethanolic extracts from Carica papaya leaves and seeds against Ascaridia galli

Paper Details

Research Paper 06/03/2025
Views (1296)
current_issue_feature_image
publication_file

In vitro comparative evaluation of the anthelmintic effects of ethanolic extracts from Carica papaya leaves and seeds against Ascaridia galli

Jake Aries M. Gulpan, Zandro O. Perez
Int. J. Biosci. 26(3), 46-52, March 2025.
Copyright Statement: Copyright 2025; The Author(s).
License: CC BY-NC 4.0

Abstract

Gastrointestinal nematodes, particularly Ascaridia galli, significantly threaten free-range chicken production, reducing growth and productivity. Raisers commonly use synthetic anthelmintics like levamisole; however, concerns over resistance and cost have driven interest in plant-based alternatives. This study evaluates the in vitro anthelmintic efficacy of ethanolic extracts from Carica papaya seeds and leaves against A. galli. Freshly collected nematodes from slaughtered native chickens were exposed to seven treatments: T0 (positive control—levamisole), T1–T3 (1 mg/ml, 2.5 mg/ml, and 5 mg/ml ethanolic seed extracts), and T4–T6 (1 mg/ml, 2.5 mg/ml, and 5 mg/ml ethanolic leaf extracts). Worm mortality was assessed at 1, 3, and 6 hours post-exposure. T1 (1 mg/ml seed extract), T3 (5 mg/ml seed extract), and T6 (5 mg/ml leaf extract) exhibited high mortality comparable to levamisole at 6 hours, suggesting strong anthelmintic potential. Phytochemical analysis revealed that tannins, saponins, alkaloids, flavonoids, and glycosides were absent in PLEE, while only alkaloids and flavonoids were detected in PSEE. The absence of these compounds may be due to variations in extraction methods and solvent use rather than their complete absence. Statistical analysis showed significant differences (p < 0.05) across treatments and time intervals. These findings suggest that papaya extracts hold promise as natural anthelmintics for poultry parasite control. In vivo research is recommended to ensure safety and practical application in chickens.

Adebiyi A, Adaikan PG. 2005. Modulation of jejunal contractions by extract of Carica papaya L. seeds. Phytotherapy Research 19(7), 628–632. http://dx.doi.org/10.1002/ptr.1706.

Amelia M, Jasaputra DK, Tjokropranoto R. 2017. Effects of pomegranate peel (Punica granatum L.) extract as an anthelmintic. J. Med. Health 1(5), 410–416. http://dx.doi.org/10.28932/jmh.v1i5.537.

Aziz ARA, Mahmoud RA, Aziz M, Omar MA, Sultan K. 2018. In vitro and in vivo anthelmintic activity of pumpkin seeds and pomegranate peels extracts. Tropical Animal Health and Production 45, 123–127. http://dx.doi.org/10.1016/j.bjbas.2018.02.003.

Badar N, Iqbal Z, Khan MN, Akhtar MS, Muhammad G. 2024. In vitro and in vivo anthelmintic response of the seeds of Amomum subulatum Roxb and Vitex negundo. Brazilian Journal of Biology 84. http://dx.doi.org/10.1590/1519-6984.261768.

Blanco MG, Vela Gurovic MS, Silbestri GF, Garelli A, Giunti S. 2018. Diisopropylphenyl-imidazole (DII): A new compound that exerts anthelmintic activity through novel molecular mechanisms. PLOS Neglected Tropical Diseases 12(12), e0007021. http://dx.doi.org/10.1371/journal.pntd.0007021.

Calagui R. 2021. Anthelmintic activity of Chrysophyllum cainito and Psidium guajava ethanolic bark extracts against Ascaridia galli of chicken. http://dx.doi.org/10.12692/ijb/19.3.141-147.

Candra A, Fahrimal Y, Yusni Y, Azwar A, Santi TD. 2024. Phytochemistry and antifatigue activities of Carica papaya leaf from geothermal, coastal, and urban areas, Indonesia. Narra Journal 4(1), e321. http://dx.doi.org/10.52225/narra.v4i1.321.

Dusaran R, Pabulayan R. 2015. Production practices of the native chicken growers in Western Visayas. https://pidswebs.pids.gov.ph/CDN/PUBLICATIONS/RO%202015-5%20Dusaran%20(Production%20Practices%20of%20the%20Native%20Chicken%20Growers%20in%20Western%20Visayas).pdf.

Goku PE, Orman E, Quartey ANK, Ansong GT, Asare-Gyan EB. 2020. Comparative evaluation of the in vitro anthelmintic effects of the leaves, stem, and seeds of Carica papaya (Linn) using the Pheretima posthuma model. Evidence-Based Complementary and Alternative Medicine 2020, 9717304. http://dx.doi.org/10.1155/2020/9717304.

Ilham R, Lelo A, Harahap U, Widyawati T, Siahaan L. 2019. The effectivity of ethanolic extract from papaya leaves (Carica papaya L.) as an alternative larvicide to Aedes spp. Open Access Macedonian Journal of Medical Sciences 7, 2864–2868. http://dx.doi.org/10.3889/oamjms.2019.432.

Jamil M, Aleem MT, Shaukat A, Khan A, Mohsin M, Rehman TU, Abbas RZ, Saleemi MK, Khatoon A, Babar W, Yan R, Li K. 2022. Medicinal plants as an alternative to control poultry parasitic diseases. Life 12(3), 449. http://dx.doi.org/10.3390/life12030449.

Liu M, Panda SK, Luyten W. 2020. Plant-based natural products for the discovery and development of novel anthelmintics against nematodes. Biomolecules 10(3), 426. http://dx.doi.org/10.3390/biom10030426.

Masfufatun M, Yani N, Putri N. 2019. Antimicrobial assay of papaya seed ethanol extract (Carica papaya Linn) and phytochemical analysis of its active compounds. Journal of Physics: Conference Series 1277, 012018. http://dx.doi.org/10.1088/1742-6596/1277/1/012018.

Mishra RR. 2024. Phytochemical analysis and comparison of some selected plants. Vegetos. http://dx.doi.org/10.1007/s42535-024-01062-4.

Moraes D, Levenhagen MA, Costa-Cruz JM, Costa AP Netto, Rodrigues RM. 2017. In vitro efficacy of latex and purified papain from Carica papaya against Strongyloides venezuelensis eggs and larvae. Revista do Instituto de Medicina Tropical de São Paulo 59, e7. http://dx.doi.org/10.1590/S1678-9946201759007.

Nagesh P, Chandravadana MV. 2002. Benzyl isothiocyanate from Carica papaya seeds: A potential anthelmintic compound. Semantics Scholar. Retrieved from  https://www.semanticscholar.org/paper/BENZYL-ISOTHIOCYANATE-FROM-CARICA-PAPAYA-SEEDS-A-Nagesh-Chandravadana/5a8a4bd555e3b6459f4bad229007514ab0345195.

Owoyele BV, Adebukola OM, Funmilayo AA, Soladoye AO. 2008. Anti-inflammatory activities of ethanolic extract of Carica papaya leaves. Inflammopharmacology 16(4), 168–173. http://dx.doi.org/10.1007/s10787-008-7008-0.

Peter J, Kumar Y, Pandey P, Masih H. 2014. Antibacterial activity of seed and leaf extract of Carica papaya var. Pusa dwarf Linn. IOSR Journal of Pharmacy and Biological Sciences 9(2), 29–37. http://dx.doi.org/10.9790/3008-09272937.

Philippine Statistics Authority. 2023. Chicken situation report April to June 2023. Retrieved from: https://psa.gov.ph/sites/default/files/lpsd/SR_Q2%202023%20Chicken%20Situation%20Report_v5_SSOv1_signed.pdf.

Puangsri T, Abdulkarim SM, Ghazali HM. 2005. Properties of Carica papaya L. (papaya) seed oil following extractions using solvent and aqueous enzymatic methods. Journal of Food Lipids 12(1), 62–76. http://dx.doi.org/10.1111/j.1745-4522.2005.00006.x.

Roy A, Khan A, Ahmad I, Alghamdi S, Rajab BS, Babalghith AO, Alshahrani MY, Islam S, Islam MR. 2022. Flavonoids: A bioactive compound from medicinal plants and its therapeutic applications. Biomed Research International 2022, 5445291. http://dx.doi.org/10.1155/2022/5445291.

Radwan NA, Khalil AI, & Wahdan AE. 2012. In vitro evaluation of antihelminthic activity of Allium sativum against adult Cotylophoron cotylophorum (Paramphistomidae). Parasitologists United Journal 5(2), 135-146.

Singh SP, Kumar S, Mathan SV, Tomar MS, Singh RK, Verma PK, Kumar A, Kumar S, Singh RP, Acharya A. 2020. Therapeutic application of Carica papaya leaf extract in the management of human diseases. Daru 28(2), 735–744. http://dx.doi.org/10.1007/s40199-020-00348-7.

Williams AR, Fryganas C, Ramsay A, Mueller-Harvey I, Thamsborg SM. 2014. Direct anthelmintic effects of condensed tannins from diverse plant sources against Ascaris suum. PLoS One 9(5), e97053. http://dx.doi.org/10.1371/journal.pone.0097053.

Ying CKJ, Perveen N, Paliwal N, Khan NH. 2021. Phytochemical analysis, antioxidant and antibacterial activity determination of ethanolic extract of Carica papaya seeds. Biomedical Journal of Scientific & Technical Research 33(5), 26175–26187. http://dx.doi.org/10.26717/BJSTR.2021.33.005459.

Zirintunda G, Biryomumaisho S, Kasozi KI, Batiha GE, Kateregga J, Vudriko P, Nalule S, Olila D, Kajoba M, Matama K, Kwizera MR, Ghoneim MM, Abdelhamid M, Zaghlool SS, Alshehri S, Abdelgawad MA, Acai-Okwee J. 2022. Emerging anthelmintic resistance in poultry: Can ethnopharmacological approaches offer a solution? Frontiers in Pharmacology 12, 774896. http://dx.doi.org/10.3389/fphar.2021.774896.

Related Articles

Hepatoprotective and antinociceptive effects of terpinolene in streptozotocin-induced diabetic peripheral neuropathic rats

Ravishankar Sarumathi, Muthukumaran Preethi, Chandrasekaran Sankaranarayanan*, Int. J. Biosci. 27(6), 156-166, December 2025.

Agromorphological characterization of six promising bambara groundnut [Vigna subterranea (L.) Verdc.] genotypes under selection in Burkina Faso

Adjima Ouoba*, Ali Lardia Bougma, Dominique Nikiéma, Mahamadi Hamed Ouédraogo, Nerbéwendé Sawadogo, Mahama Ouédraogo, Int. J. Biosci. 27(6), 145-155, December 2025.

Integrated in silico and in vitro analyses reveal E-cadherin crosstalk and TF: FVIIa complex-mediated trophoblast motility via MEK/JNK activation

Kirthika Manoharan, Jagadish Krishnan, Vijaya Anand Arumugam, Shenbagam Madhavan*, Int. J. Biosci. 27(6), 136-144, December 2025.

Effect of flooding depth and harvest intensity on soil moisture dynamics and production of baobab (Adansonia digitata) seedlings

Sissou Zakari, Pierre G. Tovihoudji, Mouiz W. I. A. Yessoufou, Sékaro Amamath Boukari, Vital Afouda, Imorou F. Ouorou Barrè, Int. J. Biosci. 27(6), 127-135, December 2025.

Local food processing and associated hygienic quality in greater Lomé, Togo: Traditional cooked corn-based dough akpan wrapped in M. cuspidata, M. mannii and M. purpurea species leaves

Mamy Eklou, Komlan Edjèdu Sodjinou, Kodjo Djidjolé Etse, Awidèma Adjolo, Benziwa Nathalie Johnson, Bayi Reine Dossou, Yaovi Ameyapoh, Raoufou Radji, Akossiwoa M-L Quashie, Int. J. Biosci. 27(6), 114-126, December 2025.

Improving the microbiological quality of spices and spice blends using treatments accessible to SMEs/SMIs

Pingdwindé Marie Judith Samadoulougou-Kafando, Korotimi Traoré, Crépin Ibingou Dibala, Aboubacar Sidiki Dao, Josias Nikiema, Idrissa Taram, Adama Pare, Inoussa Salambéré, Donatien Kaboré, Charles Parkouda, Int. J. Biosci. 27(6), 102-113, December 2025.

Twin-row planting practice in village sugarcane (Saccharum officinarum L.) plantations during first ratoon under rainfed conditions in northern Côte d’Ivoire

Allé Yamoussou Joseph, Sawadogo Fatima, Traoré Mohamed Sahabane, Fondio Lassina, Int. J. Biosci. 27(6), 91-101, December 2025.

Prevalence of dengue infection in Delta State, Nigeria

P. A. Agbure, O. P. G. Nmorsi, A. O. Egwunyenga, Int. J. Biosci. 27(6), 82-90, December 2025.