In vitro Study of garlic extract’s inhibitory effect on Vibrio parahaemolyticus: A potential alternative to antibiotics in aquaculture

Paper Details

Research Paper 02/07/2025
Views (242)
current_issue_feature_image
publication_file

In vitro Study of garlic extract’s inhibitory effect on Vibrio parahaemolyticus: A potential alternative to antibiotics in aquaculture

Thi-Phuong-Mai Cao, Nhat-Duy Le, Thi-Kim-Ngan Duong, Bui-Trong-Duc Dao, Van-Thanh Vo
Int. J. Biosci. 27(1), 1-7, July 2025.
Copyright Statement: Copyright 2025; The Author(s).
License: CC BY-NC 4.0

Abstract

This study investigates the antibacterial activity of garlic extract (Allium sativum) against Vibrio parahaemolyticus using the agar well diffusion method. The results show that garlic extract effectively inhibits bacterial growth, forming a zone of inhibition (ZOI) with an average diameter of 21.6±4.3 mm. The minimum inhibitory concentration (MIC) was determined to be 0.15625 g/mL, while the minimum bactericidal concentration (MBC) was 0.625 g/mL. The antibacterial effect of garlic extract is attributed to bioactive compounds, particularly allicin, which disrupt bacterial membranes, inhibit DNA synthesis, and interferes with quorum sensing. These findings suggest that garlic extract has significant potential as a natural antibacterial agent against V. parahaemolyticus, offering a possible alternative to synthetic antibiotics in aquaculture. Further research should focus on optimizing extraction methods, improving compound stability, and conducting in vivo studies to assess its practical applications.

Bakri IM, Douglas CWI. 2005. Inhibitory effect of garlic extract on oral bacteria. Archives of Oral Biology 50(7), 645–651. https://doi.org/10.1016/j.archoralbio.2004.12.002

Balouiri M, Sadiki M, Ibnsouda SK. 2016. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005

Booyens J, Labuschagne MC, Thantsha MS. 2014. In Vitro Antibacterial Mechanism of Action of Crude Garlic (Allium sativum) Clove Extract on Selected Probiotic Bifidobacterium Species as Revealed by SEM, TEM, and SDS-PAGE Analysis. Probiotics and Antimicrobial Proteins 6(2), 82–87. https://doi.org/10.1007/s12602-013-9145-z

Elshikh M, Ahmed S, Funston S, Dunlop P, McGaw M, Marchant R, Banat IM. 2016. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnology Letters 38(6), 1015–1019. https://doi.org/10.1007/s10529-016-2079-2

Hindler JA, Richter SS. 2016. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria: M45 (3rd edition). Clinical and Laboratory Standards Institute.

Indira M, Bhuvaneshwari G, Premkumar L, Neelusree P. 2024. Antibacterial Activity of the Allium sativum Crude Extract against Methicillin-resistant Staphylococcus aureus. Journal of Pure and Applied Microbiology 18(2), 1297–1304. https://doi.org/10.22207/JPAM.18.2.50

Maffei ME, Gertsch J, Appendino G. 2011. Plant volatiles: Production, function and pharmacology. Natural Product Reports 28(8), 1359. https://doi.org/10.1039/c1np00021g

Mishra. 2017. Present Status of Fish Disease Management in Freshwater Aquaculture in India: State-of-the-Art-Review. Aquaculture & Fisheries 1(1), 1–9. https://doi.org/10.24966/AAF-5523/100003

Muhamad IR, Mohd FN, Idris SM, Abdullah A, Ramli R, Mansor NN, Ridzuan M, Mustafa S. 2024. Assessment of Antibacterial Activity of Fresh Garlic Juice Extract against Vibrio spp. Isolated from Hybrid Grouper. Malaysian Fisheries Journal 24, 34-44.

Muniesa A, PerezEnriquez R, CabanillasRamos J, MagallónBarajas FJ, ChávezSánchez C, EsparzaLeal H, De Blas I. 2017. Identifying risk factors associated with White Spot Disease outbreaks of shrimps in the Gulf of California (Mexico) through expert opinion and surveys. Reviews in Aquaculture 9(3), 257–265. https://doi.org/10.1111/raq.12136

Phuong VTB, Loc HTP, Phuong QND. 2023. Investigation on extraction methods of garlic (Allium sativum L.) with activity against three strains of Vibrio causing disease in shrimp. Research Journal of Chemistry and Environment 27(7), 1–10. https://doi.org/10.25303/2707rjce01010

Piyanut C, Nontawith A, Oraporn M. 2020. Hepatopancreatic antioxidant enzyme activities and disease resistance of Pacific white shrimp (Litopenaeus vannamei) fed diet supplemented with garlic (Allium sativum) extract. Agriculture and Natural Resources 054(4), 377–386. https://doi.org/10.34044/j.anres.2020.54.4.06

Ramadhaniah V, Indrawati A, Prasetyo BF. 2023. Activity of Garlic (Allium Sativum L.) Extract Against Vibrio Parahaemolyticus Bacteria. IOP Conference Series: Earth and Environmental Science 1174(1), 012004. https://doi.org/10.1088/1755-1315/1174/1/012004

Reiter J, Hübbers AM, Albrecht F, Leichert LIO, Slusarenko AJ. 2020. Allicin, a natural antimicrobial defence substance from garlic, inhibits DNA gyrase activity in bacteria. International Journal of Medical Microbiology 310(1), 151359. https://doi.org/10.1016/j.ijmm.2019.151359

Schmidt AS, Bruun MS, Dalsgaard I, Pedersen K, Larsen JL. 2000. Occurrence of Antimicrobial Resistance in Fish-Pathogenic and Environmental Bacteria Associated with Four Danish Rainbow Trout Farms. Applied and Environmental Microbiology 66(11), 4908–4915. https://doi.org/10.1128/AEM.66.11.4908-4915.2000

SudalayIK, Krishnamoorthy S, Prasanna KP. 2013. Effect of garlic extract on the luciferase, bio-luminescence, virulence factors produced by Vibrio harveyi with a challenge during Penaeus monodon larviculture. African Journal of Microbiology Research 7(18), 1766–1779. https://doi.org/10.5897/AJMR12.950

Vo TTA, Tran CL, Nguyen TN, Nguyen TLN, Vuong TQ, Trang DTX. 2021. Chemical Composition and Antibacterial ACTIVITY AGAINST Vibrio parahaemolyticus of Extracts from Dillenia ovata. Can Tho University Journal of Science 57(3), 97–105. https://doi.org/10.22144/ctu.jvn.2021.090

Related Articles

Lipid peroxidation and antioxidant status in 2,4,6-octatrienoic acid treated A549 and HCT-116 cancer cells

Shanmugam M. Sivasankaran, Raju Kowsalya, Krishnan Baskaran, Chakravarthy Elanchezhiyan, Int. J. Biosci. 27(1), 291-296, July 2025.

Public health implications of microbial contamination in registered slaughterhouses: A case study from La Union, Philippines

Carlo G. Fernandez, Harlene S. Fernandez, Priscilo P. Fontanilla Jr., Reinalyn D. Austria, Int. J. Biosci. 27(1), 272-290, July 2025.

Heterocyclic pyrazoline’s derivatives exhibiting promising potential antidiabetic activity

Mohd Akil, Farah Siddiqui, Amar Chandra Sharma, Mirza Masroor Ali Beg, Iqbal Azad, Firoz Hassan, Abdul Rahman Khan, Naseem Ahmad, Benjamin Siddiqui, Int. J. Biosci. 27(1), 244-271, July 2025.

Harnessing mangrove ecosystems for CO2 sequestration: Insights from remote sensing and GIS technologies

Anas Bin Firoz, Vaishaly Saranaathan, Swagata Chakraborty, Thoti Damodharam, Munisamy Govindaraju, Int. J. Biosci. 27(1), 225-243, July 2025.

Zootechnical performances of djallonké sheep supplemented with cocoa bean fragments, fruits, and leaves of Cajanus cajan in Côte D’ivoire

Ané François De Paul Atsé, Jacques Yao Datté, Sidiki Sangaré, Alassane Méïté, Int. J. Biosci. 27(1), 213-224, July 2025.

Cultivation and nutritional analysis of Pleurotus sp. from different substrates

P. Maheswari, P. Madhanraj, V. Ambikapathy, P. Prakash, A. Panneerselvam, Int. J. Biosci. 27(1), 204-212, July 2025.

Crinum asiaticum L. bulb extracts as a potential source of novel antimicrobial agents: An in-vitro study

K. Gowthaman, P. Prakash, V. Ambikapathy, S. Babu, A. Panneerselvam, Int. J. Biosci. 27(1), 194-203, July 2025.