Influence of ammonia-nitrogen on the diversity of microalgae in clean and highly concentrated wastewater

Paper Details

Research Paper 01/04/2014
Views (584)
current_issue_feature_image
publication_file

Influence of ammonia-nitrogen on the diversity of microalgae in clean and highly concentrated wastewater

Fida Hussain, Syed Zahir Shah, Muhammad Saleem Khan, Wisal Muhammad, Sajjad Ali, Wenguang Zhou, Roger Ruan
J. Biodiv. & Environ. Sci. 4(4), 418-421, April 2014.
Copyright Statement: Copyright 2014; The Author(s).
License: CC BY-NC 4.0

Abstract

The diversity of microalgae can be affected by different factors serving as source of their nutrients. The most promising factor which is highly variable for different clean and waste-water bodies is Ammonia-nitrogen (NH4-N). The NH4-N studied for different locations of the district Malakand showed a variation in their values in respect to different seasons. The areas studied has NH4-N value ranges from 0.4-3 mg/L for stagnant water, 0.1-0.8 mg/L for running water and 2.1- 4.4 mg/L for wastewater. The highest values were found to be in summer season for all the water bodies studied. The NH4-N values were enhanced by warm temperature in stagnant and waste water bodies, while there was no temperature effect on NH4-N of running water. NH4-N is a basic source of nitrogen for microalgae growth and stagnant clean water has sufficient NH4-N which is best suitable place for a variety of microalgae growth. Because of high temperature summer season could provide sufficient NH4-N in these water bodies. Excessive amount of NH4-N in a water body could limit microalgae variation and only tolerant species could develop which is a source of algal blooms.

Allison FE, Morris HJ. 1930. Nitrogen Fixation by Blue-Green Algae. Science 71(1834), 221-3.

Anderson HA. 1909. THE ALGAe OF THE ITHACA MARSHES. Science 30(775), 654.

Arauzo M, Colmenarejo M, Martınez E and Garcıa M. 2000. The role of algae in a deep wastewater self-regeneration pond. Water Research 34(14), 3666-3674.

Barsanti L and Gualtieri P. 2006. Algae: Anatomy. Biochemistry, and Biotechnology. CRC Press: 167.

Bogan RH. 1961. Removal of sewage nutrients by algae. Public health reports, 76(4), 301-308.

Brown RM, Jr, Larson DA and Bold HC. 1964. Airborne Algae: Their Abundance and Heterogeneity. Science, 143(3606), 583-5.

Combs GF. 1952. Algae (Chlorella) as a source of nutrients for the chick. Science, 116(3017), 453-4.

Geoghegan MJ. 1951. Unicellular algae as a source of food. Nature, 168(4271), 426-7.

Leghari M, Waheed SB and Leghari M. 2001. Ecological study of algal flora of kunhar river of pakistan. Pak J Bot, 33, 176-183.

Setchell WA. 1917. Geographical Distribution of the Marine Algae. Science, 45(1157), 197-204.

Skinner CE and Gardner CG. 1930. The Utilization of Nitrogenous Organic Compounds and Sodium Salts of Organic Acids by Certain Soil Algae in Darkness and in the Light. Journal of bacteriology, 19(3), 161-79.

Wang L. 2010. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol, 101(8), 2623-8.

Watanabe A, Nishigaki S and Konishi C. 1951. Effect of nitrogen-fixing blue-green algae on the growth of rice plants. Nature, 168(4278), 748-9.

Zimmo O, Van der Steen N and Gijzen H. 2004. Nitrogen mass balance across pilot-scale algae and duckweed-based wastewater stabilisation ponds. Water Res, 38(4), 913-920.

Related Articles

Agroforestry in woody-encroached Sub-Saharan savannas: Transforming ecological challenges into sustainable opportunities

Yao Anicet Gervais Kouamé, Pabo Quévin Oula, Kouamé Fulgence Koffi, Ollo Sib, Adama Bakayoko, Karidia Traoré, J. Biodiv. & Environ. Sci. 27(3), 10-22, September 2025.

Extreme rainfall variability and trends in the district of Ouedeme, municipality of Glazoue (Benin)

Koumassi Dègla Hervé, J. Biodiv. & Environ. Sci. 27(3), 1-9, September 2025.

Heterosis breeding, general and specific combining ability and stability studies in pearl millet: Current trends

Ram Avtar, Krishan Pal, Kavita Rani, Rohit Kumar Tiwari, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 117-124, August 2025.

Combining ability, heterosis and stability for yield and fibre quality traits in cotton: Breeding approaches and future prospects

Rohit Kumar Tiwari, Krishan Pal, R. P. Saharan, Ram Avtar, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 109-116, August 2025.

Bridging the COPD awareness gap in marginalized populations: Findings from a multicentre study in Khalilabad, Sant Kabir Nagar, Uttar Pradesh, India

Anupam Pati Tripathi, Jigyasa Pandey, Sakshi Singh, Smita Pathak, Dinesh Chaudhary, Alfiya Mashii, Farheen Fatima, J. Biodiv. & Environ. Sci. 27(2), 97-108, August 2025.

Antioxidant and anti-inflammatory activity of Pleurotus citrinopileatus Singer and Pleurotus sajor-caju (Fr.) Singer

P. Maheswari, P. Madhanraj, V. Ambikapathy, P. Prakash, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(2), 90-96, August 2025.

Mangrove abundance, diversity, and productivity in effluent-rich estuarine portion of Butuanon River, Mandaue City, Cebu

John Michael B. Genterolizo, Miguelito A. Ruelan, Laarlyn N. Abalos, Kathleen Kay M. Buendia, J. Biodiv. & Environ. Sci. 27(2), 77-89, August 2025.

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.