Inhibition of xanthine oxidase activity from extracted Agathis philippinensis (Almaciga), Tabernaemontana pandacaqui (Banana bush), and Cymbopogon citratus (Lemon grass)
Paper Details
Inhibition of xanthine oxidase activity from extracted Agathis philippinensis (Almaciga), Tabernaemontana pandacaqui (Banana bush), and Cymbopogon citratus (Lemon grass)
Abstract
Xanthine oxidase is a terminal enzyme for the breakdown of both hypoxanthine and xanthine to uric acid which has an essential role in conditions like hyperuricemia and gout. The “Malaueg” Community of Rizal, Cagayan identified Tabernaemontana pandacaqui (Banana bush) as having wound healing properties and Agathis philippinensis (Almaciga) and Cymbopogon citratus (Lemon grass) capable of easing arthritis. This study determined the phytochemical profiles of the plants and xanthine oxidase inhibition (XOI) potentials using UV-Vis spectrophotometer. The aqueous extract of the plants was screened for the presence of phytochemicals. A. philippinensis showed slightly active signals for flavonoids and tannins. T. pandacaqui showed active signals for coumarins, flavonoids, and tannins and very active signals for saponins. C. citratus showed slight active signals for tannins, active signals for flavonoids and very active signals for coumarins. The aqueous extracts were used for xanthine oxidase inhibition. Aqueous extracts of T. pandacaqui, C. citratus, and A. philippinensis elicited an XOI percentages of 57.53 ±4.169, 54.96 ± 3.030, and 22.63 ±0.7898, respectively. The positive control, Allopurinol obtained a percentage inhibition of 88.82 ±1.507. T. pandacaqui and C. citratus are potential herbal plants for xanthine oxidase inhibition and for drug discovery.
Achmad FH, ATY W, Arannya PD, Nike F, Lidya T, Indah ST. 2014. In vitro antimalarial activity screening of several Indonesian plants using hrp2 assay. International Journal of Pharmacy and Pharmaceutical Science 6, 125-128.
Agbafor KN, Akubugwo EI. 2007. Hypocholesterolaemic effect of ethanolic extract of fresh leaves of Cymbopogon citratus (lemongrass). African Journal of Biotechnology 6(5), 596-598. DOI: 10.5897/AJB2007.000-2054
Anam K, Susilo D, Kusrini D, Agustina LN. 2017. Chemical Constituents and Inhibition Xanthine Oxidase Activity of Avicennia marina Exudate. Research Journal of Medicinal Plants 11(1), 19-24. DOI: 10.3923/rjmp.2017.19.24
Bradacs G, Maes L, Heilmann Jã. 2009. In vitro cytotoxic, antiprotozoal and antimicrobial activities of medicinal plants from Vanuatu. Phytotherapy Research, n/a–n/a. doi:10.1002/ptr.2981
Calderon PE, Juan CS, Pedro MG, Reyes AM, Salom PJ, Sanchez AR, Ples M. 2016. Protective influence of Carica papaya L. aqueous leaf extract against hyperuricemia and acute renal injury in a murine model. American Institute of Physics 1744(1). DOI: 10.1063/1.4953517
Cantu-Medellin N, Kelley EE. 2013. Xanthine oxidoreductase-catalyzed reactive species generation: a process in critical need of reevaluation. Redox biology 1(1), 353-358. DOI.org/10.1016/ j.redox. 2013.05.002
Chen Z, He D, Deng J, Zhu J, Mao Q. 2015. Chemical composition and antibacterial activity of the essential oil from Agathis dammara (Lamb.) Rich fresh leaves. Natural Product Research 29(21), 2050-2053. DOI: 10.1080/14786419.2015.1022544
Cheng X, Changgui L. 2015. The principles of gout therapy. Gout Hyperuricemia 2(1), 15-23.
Chungsamarnyart N, Jiwajinda S. 1992. Acaricidal activity of volatile oil from lemon and citronella grasses on tropical cattle ticks. Kasetsart Journal 26(5), 46-51.
Cos P, Ying L, Calomme M, Hu JP, Cimanga K, Van Poel B, … Berghe DV. 1998. Structure− activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. Journal of natural products 61(1), 71-76.
D’Mello P, Gadhwal MK, Joshi U, Shetgiri P. 2011. Modeling of COX-2 inhibitory activity of flavonoids. International Journal of Pharmacy and Pharmaceutical Sciences 3(4), 33-40.
Dey A, Mukherjee A, Chaudhury M. 2017. Alkaloids from Apocynaceae. Studies in Natural Products Chemistry 373-488. DOI: 10.1016/b978-0
Edeoga HO, Okwu DE, Mbaebie BO. 2005. Phytochemical constituents of some Nigerian medicinal plants. African Journal of Biotechnology vol. 4 (7), pp 685688.
Figueirinha A, Cruz MT, Francisco V, Lopes MC, Batista MT. 2010. Anti-inflammatory activity of Cymbopogon citratus leaf infusion in lipopolysaccharide-stimulated dendritic cells: contribution of the polyphenols. Journal of Medicinal Food 13(3), 681-690. DOI: 10.1089/jmf.2009.0115
Harborne JB. 1984. Phytochemical Methods; A guide to modern techniques of plant Analysis. 2nd Edition, London New York.
Hindumathy CK. 2011. In vitro study of antibacterial activity of Cymbopogon citratus. International Journal of Biotechnology and Bioengineering 5(2), 48-52.
Jiao RH, Ge HM, Shi Da H, Tan RX. 2006. An apigenin-derived xanthine oxidase inhibitor from Palhinhaea cernua. J. Nat. Prod 69, 1089-1091.
Kostić DA, Dimitrijević DS, Stojanović GS, Palić IR, Đorđević AS, Ickovski JD. 2015. Xanthine oxidase: isolation, assays of activity, and inhibition. Journal of Chemistry, Volume 2015. DOI: 10.1155/2015/294858
Lin HC, Tsai SH, Chen CS, Chang YC, Lee CM, Lai ZY, Lin CM. 2008. Structure–activity relationship of coumarin derivatives on xanthine oxidase-inhibiting and free radical-scavenging activities. Biochemical pharmacology 75(6), 1416-1425. DOI: 10.1016/j.bcp.2007.11.023
Nishino T, Okamoto K, Eger BT, Pai EF, Nishino T. 2008. Mammalian xanthine oxidoreductase–mechanism of transition from xanthine dehydrogenase to xanthine oxidase. The FEBS journal 275(13), 3278-3289. DOI: 10.1111/j.1742-4658.2008. 06489.x
Noor Rain A, Khozirah S, Mohd Ridzuan MA, Ong BK, Rohaya C, Rosilawati M, … Zakiah I. 2007. Antiplasmodial properties of some Malaysian medicinal plants. Trop Biomed 24(1), 29-35.
Owen PL, Johns T. 1999. Xanthine oxidase inhibitory activity of northeastern North American plant remedies used for gout. Journal of ethnopharmacology 64(2), 149-160. DOI: 10.1016/ S0378-8741(98)00119-6
Pedroso RB, Ueda-Nakamura T, Filho BPD, Cortez DAG, Cortez LER, Morgado-Diaz JA, Nakamura CV. 2007. Biological activities of essential oil obtained from Cymbopogon citratus on Crithidia deanei. Acta Protozoologica 45(3), 231.
Silva CDBD, Guterres SS, Weisheimer V, Schapoval EE. 2008. Antifungal activity of the lemongrass oil and citral against Candida spp. Brazilian Journal of Infectious Diseases 12(1), 63-66.
Singh H, Krishna G, Baske PK. 2010. Plants used in the treatment of joint diseases (rheumatism, arthritis, gout and lumbago) in Mayurbhanj district of Odisha, India. Rep. Opin 2, 22-26.
Stuart GU, Jr. 2016a. Almaciga/Agathis philippinensis Warb, Philippine agathis:Philippine Medicinal Herbs/Philippine Herbal Medicine. Retrieved May 13, 2018, from www. stuartxchange.org//Alamaciga.htmL
Stuart GU, Jr. 2016b. Tanglad/Cymbopogon citratus, lemon grass: Philippine Medicinal Herbs/Philippine Herbal Medicine. Retrieved May 13, 2018, from www.stuartxchange.org /Tanglad.htmL
Stuart GU, Jr. 2016c. Pandakaking-puti , Tabernaemontana pandacaqui Poir. Banana bush: Philippine Medicinal Herbs/Philippine Herbal Medicine. Retrieved May 13, 2018, from www. stuartxchange. org/Tanglad.htmL
Taesotikul T, Panthong A, Kanjanapothi D, Verpoorte R, Scheffer JJ. 1998. Neuropharmacological activities of the crude alkaloidal fraction from stems of Tabernaemontana pandacaqui Poir. Journal of Ethnopharmacology 62(3), 229-234. DOI: 10.1016/s0378-8741(98)00081-6
Tangpu V, Yadav AK. 2006. Antidiarrhoeal activity of Cymbopogon citratus and its main constituent, citral. Pharmacologyonline 2, 290-298.
Michelle Beatriz V. Iringan, Kimberly Mae M. Montenegro, Jane R. Sambrana, Ramelo Jr. B. Ramirez (2022), Inhibition of xanthine oxidase activity from extracted Agathis philippinensis (Almaciga), Tabernaemontana pandacaqui (Banana bush), and Cymbopogon citratus (Lemon grass); JBES, V21, N3, September, P35-40
https://innspub.net/inhibition-of-xanthine-oxidase-activity-from-extracted-agathis-philippinensis-almaciga-tabernaemontana-pandacaqui-banana-bush-and-cymbopogon-citratus-lemon-grass/
Copyright © 2022
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0