Investigation of polyethylene glycol on some elements and proline of monogrem genotypes leaf of sugar beet in greenhouse conditions

Paper Details

Research Paper 01/01/2014
Views (577)
current_issue_feature_image
publication_file

Investigation of polyethylene glycol on some elements and proline of monogrem genotypes leaf of sugar beet in greenhouse conditions

Lida Issazadeh, Reza Serajamani, Mojtaba Ghasemi Fahim, Bahram Mirzamasoumzadeh
J. Biodiv. & Environ. Sci. 4(1), 228-232, January 2014.
Copyright Statement: Copyright 2014; The Author(s).
License: CC BY-NC 4.0

Abstract

Drought stress was one of the major problems to produce farms plants in Iran and the world, as well as a serious threat to the successful production of crops around the world. In other hand, drought stress was main factor to decrease sugar beet performance. According to this issue, an examination was done on 2011 at greenhouse in order to Investigate Polyethylene Glycol on some elements and proline of monogerm genotypes leaf of sugar beet. Examination was done in two-factor factorial frame in a randomized complete block design with three replications. In Factor a (drought level: 1 normal irrigation, 2: Polyethylene glycol 6000 with 30% concentration) and factor b (genotype) was performed. In this study, sodium, potassium, phosphorus and leaf proline were evaluated. The results showed that there was significant difference at 1% probable level between interaction of × genotype in term of sodium, potassium and phosphorus characteristics and there was no significant difference at proline leaf genotypes at 1% probable level. Polyethylene glycol caused to reduce 3.84 % sodium, 42.99 % potassium as well as caused to increase 40.68 % proline and 54.47 % phosphorus. Sodium and potassium among elements had 30908 and phosphorus had 30906 values. . Comparing effects mean sodium, potassium and phosphorus showed that highest values was respectively (normal × genotype 30,906), (normal × genotype 30,906) and (PEG 6000 × genotype 30906) combinations.

Al Bahrany M. 2002.Hand book of seed physiology, Food Product press, NewYork. p. 270.

Clover G, Smith H, Jaggard K. 1998.The crop under stress. British Sugar Beet Review 66(3), 17-19.

Firouzabadi Brothers M, Shamei S, Naimi Gh. 2003. Effect of different levels of water stress on improving the quality and quantity of three sugar beet lines. Journal of Sugar Beet (2) 19, 133-143.

Hosseini S, Pourebrahim H. 2006. Economic Evaluation of Agricultural Research in Iran: Sugar Beet. Journal of Agricultural Science (2), 83-75. Iran.

Kafi M, MahdaviDamghani A. 2002. Resistance mechanisms of plants to environmental stresses (translation). University of Mashhad.

Michel BE, Kaufmann MR. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physioloy 51, 914-916.

Nasiri M, Seyed sharifi R. 2007. Effect of micronutrient application on drought resistance of sugar beet seed production. 10th Congress of Soil Science p. 123.

Ober E. 2001. The search for drought tolerance in sugar beet. British Sugar Beet Review 69 (1), 40-43.

Tsveltkou M, Weele R. 2000. Effects of seed coating and osmotic priming on the germination of lettuce seeds. Journal of the American Society for Horticulture Science 112, 153-156.

Related Articles

Agroforestry in woody-encroached Sub-Saharan savannas: Transforming ecological challenges into sustainable opportunities

Yao Anicet Gervais Kouamé, Pabo Quévin Oula, Kouamé Fulgence Koffi, Ollo Sib, Adama Bakayoko, Karidia Traoré, J. Biodiv. & Environ. Sci. 27(3), 10-22, September 2025.

Extreme rainfall variability and trends in the district of Ouedeme, municipality of Glazoue (Benin)

Koumassi Dègla Hervé, J. Biodiv. & Environ. Sci. 27(3), 1-9, September 2025.

Heterosis breeding, general and specific combining ability and stability studies in pearl millet: Current trends

Ram Avtar, Krishan Pal, Kavita Rani, Rohit Kumar Tiwari, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 117-124, August 2025.

Combining ability, heterosis and stability for yield and fibre quality traits in cotton: Breeding approaches and future prospects

Rohit Kumar Tiwari, Krishan Pal, R. P. Saharan, Ram Avtar, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 109-116, August 2025.

Bridging the COPD awareness gap in marginalized populations: Findings from a multicentre study in Khalilabad, Sant Kabir Nagar, Uttar Pradesh, India

Anupam Pati Tripathi, Jigyasa Pandey, Sakshi Singh, Smita Pathak, Dinesh Chaudhary, Alfiya Mashii, Farheen Fatima, J. Biodiv. & Environ. Sci. 27(2), 97-108, August 2025.

Antioxidant and anti-inflammatory activity of Pleurotus citrinopileatus Singer and Pleurotus sajor-caju (Fr.) Singer

P. Maheswari, P. Madhanraj, V. Ambikapathy, P. Prakash, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(2), 90-96, August 2025.

Mangrove abundance, diversity, and productivity in effluent-rich estuarine portion of Butuanon River, Mandaue City, Cebu

John Michael B. Genterolizo, Miguelito A. Ruelan, Laarlyn N. Abalos, Kathleen Kay M. Buendia, J. Biodiv. & Environ. Sci. 27(2), 77-89, August 2025.

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.