Isolation and characterization of lovastatin producing fungi; investigating the antimicrobial and extracellular enzymatic activities

Paper Details

Research Paper 01/02/2017
Views (729)
current_issue_feature_image
publication_file

Isolation and characterization of lovastatin producing fungi; investigating the antimicrobial and extracellular enzymatic activities

Mishal Subhan, Syeda Besma Sabir, Yasmeen Akhtar, Samiullah khan, Ian Macreadie, Rani Frayal
Int. J. Biosci. 10(2), 12-20, February 2017.
Copyright Statement: Copyright 2017; The Author(s).
License: CC BY-NC 4.0

Abstract

Lovastatin is the drug used to reduce blood cholesterol serum levels. The present study includes the isolation of new fungal species such as Aspergillus terreus to produce lovastatin and other key secondary metabolites that can be effectively used as antimicrobial agents. New strain was characterized by morphological and molecular identification. Lovastatin was produced by Aspergillus terreus by submerged fermentation, and the levels of lovastatin produced were calculated to be 405mg/l. The initial characterization of crude extract was done by yeast inhibition bioassays, thin layer chromatography and Fourier transform-Infrared spectroscopy and later confirmed by high performance chromatographic analysis. The antibacterial and antifungal activities of crude extracts were determined including the assessment of enzymatic potential of fungal Aspergillus terreus. The study concludes that Aspergillus terreus is the newly isolated fungal strain that is a potent producer of lovastatin, exhibiting various other biologically important characteristics that can be used for the exploitation in various industries.

De Castro AP, Fernandes GR, Franco OL. 2014. Insights into novel antimicrobial compounds and antibiotic resistance genes from soil metagenomes. Frontiers in Microbiology 5, 489. http://dx.doi.org/10.3389/fmicb.2014.00489

Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for Basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology 2, 113-118. http://dx.doi.org/10.1111/j.1365294X.1993.tb00005.x

Lingappa K, VivekBabu CS, Siddalingeshwar KG. 2004. Isolation, screening and rapid confirmation of lovastatin producing strains of Aspergillus terreus. Indian Journal of Microbiology 2, 133-135.

Petit P, Lucas EM, Abreu LM, Pfenning LH, Takahashi JA. 2009. Novel antimicrobial secondary metabolites from a Penicillium sp. isolated from Brazilian cerrado soil. Electronic Journal of Biotechnology 12, 8-9. http://dx.doi.org/10.4067/S071734582009000400008

Qiao J, Kontoyiannis DP, Wan Z, Li R, Liu W. 2007. Antifungal activity of statins against Aspergillus species. Medical Mycology 45, 589-593. http://dx.doi.org/10.1080/1369378070139767

Rajeswari KR, Abbul UK, Viswandham M, Tejaswini MS. 2012. Studies on dissolution enhancement of lovastatin using soluplus by solid dispersion technique. International Journal of Pharmacy and Pharmaceutical Sciences 4, 124-128.

Samiee SM, Moazami N, Haghighi S, Aziz Mohseni F, Mirdamadi S, Bakhtiari MR. 2003. Screening of lovastatin production by filamentous fungi. Iranian Biomedical Journal 7, 29-33.

Srividya S, Prakash C. 2014. Bioprospecting of lovastatin producing fungi isolated from soil samples. International Research Journal of Biological Sciences 3, 42-46.

Subhan M, Faryal R, Macreadie I. 2016. Exploitation of Aspergillus terreus for the production of natural statins. Journal of Fungi 2, 13. http://dx.doi.org/10.3390/jof2020013

Flachner B, Réczey K. 2004. β-glucosidase production and characterization of some Aspergillus strains. Chemical Biochemical Engineering 18, 303-307.

Avinash KS, Ashwini HS, RameshBabu HN, Krishnamurthy YL. 2015Antimicrobial potential of crude extract of Curvularia lunata, an endophytic fungi isolated from Cymbopogon caesius, Journal of Mycology 2015, 1-4. http://dx.doi.org/10.1155/2015/185821

Related Articles

The protective effect of black pepper (Piper nigrum) on liver enzymes in streptozotocin-induced diabetic rats

Amani A. R. Filimban, Khulud A. Wathi, Int. J. Biosci. 27(4), 140-149, October 2025.

Production of bioplastics (PHB) using waste paper as feed stock by Cupriavidus taiwanensis

Ajeena Davis, Jini Joseph, Int. J. Biosci. 27(4), 130-139, October 2025.

Gill ectoparasites of the mugilidae from the Ebrié lagoon, Abidjan (Côte d’Ivoire)

Eby Yoboué Gnamma Honorine Alla, Carel Wilfried Bermian Dibi-Ahui, Fidèle Kouassi Kouakou, Abouo Béatrice Adepo-Gourene, Int. J. Biosci. 27(4), 123-129, October 2025.

Impacts of diverse water management systems on growth and yield of two prominent boro rice cultivars in Bangladesh

Zahidul Islam, Md Ekhlasur Rahman, Md Khayrul Islam Bashar, Sharmin Sultana, Md Taharat Al Tauhid, Md Rabiul Islam, Md Shahed Hossain, Md Musa Mondal, Pradip Kumar Biswas, Int. J. Biosci. 27(4), 110-122, October 2025.

First record of Brachymeria excarinata Gahan, 1925 (Hymenoptera: Chalcididae) parasitizing Plutella xylostella (L.) (Lepidoptera: Plutellidae) in west Africa

Babacar Labou, Etienne Tendeng, El hadji Sérigne Sylla, Mamadou Diatte, Karamoko Diarra, Int. J. Biosci. 27(4), 104-109, October 2025.

Assessment of adsorption isotherms of three plantain flours (Musa paradisiaca L. var. Horn 1, FHIA 21 and PITA 3) and cassava flour (Manihot esculenta Crantz var. Bonoua 2)

Brou Koffi Siméon, Yue Bi Yao Clément, Kane Fako, Douali Gohi Bi Douali Jean-Sory, Tano Kablan, Int. J. Biosci. 27(4), 93-103, October 2025.

Exploring the antioxidant efficacy of boldine: A natural compound with broad-spectrum activity

Maharani Jaganathan, Kathiresan Suresh, Manickam John, Rajeswari Vasu, Theerthu Azhamuthu, Nihal Ahamed Abulkalam Asath, Ravichandran Pugazhendhi, Pratheeba Veerapandiyan, Int. J. Biosci. 27(4), 82-92, October 2025.

Assessment of genetic parameters and yield trait stability in sweet sorghum genotypes through AMMI and GGE biplot approaches

A. H. Inuwa, H. A. Ajeigbe, Y. Mustapha, B. S. Aliyu, I. I. Angarawai, Int. J. Biosci. 27(4), 69-81, October 2025.