Isolation and characterization of lovastatin producing fungi; investigating the antimicrobial and extracellular enzymatic activities

Paper Details

Research Paper 01/02/2017
Views (761)
current_issue_feature_image
publication_file

Isolation and characterization of lovastatin producing fungi; investigating the antimicrobial and extracellular enzymatic activities

Mishal Subhan, Syeda Besma Sabir, Yasmeen Akhtar, Samiullah khan, Ian Macreadie, Rani Frayal
Int. J. Biosci. 10(2), 12-20, February 2017.
Copyright Statement: Copyright 2017; The Author(s).
License: CC BY-NC 4.0

Abstract

Lovastatin is the drug used to reduce blood cholesterol serum levels. The present study includes the isolation of new fungal species such as Aspergillus terreus to produce lovastatin and other key secondary metabolites that can be effectively used as antimicrobial agents. New strain was characterized by morphological and molecular identification. Lovastatin was produced by Aspergillus terreus by submerged fermentation, and the levels of lovastatin produced were calculated to be 405mg/l. The initial characterization of crude extract was done by yeast inhibition bioassays, thin layer chromatography and Fourier transform-Infrared spectroscopy and later confirmed by high performance chromatographic analysis. The antibacterial and antifungal activities of crude extracts were determined including the assessment of enzymatic potential of fungal Aspergillus terreus. The study concludes that Aspergillus terreus is the newly isolated fungal strain that is a potent producer of lovastatin, exhibiting various other biologically important characteristics that can be used for the exploitation in various industries.

De Castro AP, Fernandes GR, Franco OL. 2014. Insights into novel antimicrobial compounds and antibiotic resistance genes from soil metagenomes. Frontiers in Microbiology 5, 489. http://dx.doi.org/10.3389/fmicb.2014.00489

Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for Basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology 2, 113-118. http://dx.doi.org/10.1111/j.1365294X.1993.tb00005.x

Lingappa K, VivekBabu CS, Siddalingeshwar KG. 2004. Isolation, screening and rapid confirmation of lovastatin producing strains of Aspergillus terreus. Indian Journal of Microbiology 2, 133-135.

Petit P, Lucas EM, Abreu LM, Pfenning LH, Takahashi JA. 2009. Novel antimicrobial secondary metabolites from a Penicillium sp. isolated from Brazilian cerrado soil. Electronic Journal of Biotechnology 12, 8-9. http://dx.doi.org/10.4067/S071734582009000400008

Qiao J, Kontoyiannis DP, Wan Z, Li R, Liu W. 2007. Antifungal activity of statins against Aspergillus species. Medical Mycology 45, 589-593. http://dx.doi.org/10.1080/1369378070139767

Rajeswari KR, Abbul UK, Viswandham M, Tejaswini MS. 2012. Studies on dissolution enhancement of lovastatin using soluplus by solid dispersion technique. International Journal of Pharmacy and Pharmaceutical Sciences 4, 124-128.

Samiee SM, Moazami N, Haghighi S, Aziz Mohseni F, Mirdamadi S, Bakhtiari MR. 2003. Screening of lovastatin production by filamentous fungi. Iranian Biomedical Journal 7, 29-33.

Srividya S, Prakash C. 2014. Bioprospecting of lovastatin producing fungi isolated from soil samples. International Research Journal of Biological Sciences 3, 42-46.

Subhan M, Faryal R, Macreadie I. 2016. Exploitation of Aspergillus terreus for the production of natural statins. Journal of Fungi 2, 13. http://dx.doi.org/10.3390/jof2020013

Flachner B, Réczey K. 2004. β-glucosidase production and characterization of some Aspergillus strains. Chemical Biochemical Engineering 18, 303-307.

Avinash KS, Ashwini HS, RameshBabu HN, Krishnamurthy YL. 2015Antimicrobial potential of crude extract of Curvularia lunata, an endophytic fungi isolated from Cymbopogon caesius, Journal of Mycology 2015, 1-4. http://dx.doi.org/10.1155/2015/185821

Related Articles

Hepatoprotective and antinociceptive effects of terpinolene in streptozotocin-induced diabetic peripheral neuropathic rats

Ravishankar Sarumathi, Muthukumaran Preethi, Chandrasekaran Sankaranarayanan*, Int. J. Biosci. 27(6), 156-166, December 2025.

Agromorphological characterization of six promising bambara groundnut [Vigna subterranea (L.) Verdc.] genotypes under selection in Burkina Faso

Adjima Ouoba*, Ali Lardia Bougma, Dominique Nikiéma, Mahamadi Hamed Ouédraogo, Nerbéwendé Sawadogo, Mahama Ouédraogo, Int. J. Biosci. 27(6), 145-155, December 2025.

Integrated in silico and in vitro analyses reveal E-cadherin crosstalk and TF: FVIIa complex-mediated trophoblast motility via MEK/JNK activation

Kirthika Manoharan, Jagadish Krishnan, Vijaya Anand Arumugam, Shenbagam Madhavan*, Int. J. Biosci. 27(6), 136-144, December 2025.

Effect of flooding depth and harvest intensity on soil moisture dynamics and production of baobab (Adansonia digitata) seedlings

Sissou Zakari, Pierre G. Tovihoudji, Mouiz W. I. A. Yessoufou, Sékaro Amamath Boukari, Vital Afouda, Imorou F. Ouorou Barrè, Int. J. Biosci. 27(6), 127-135, December 2025.

Local food processing and associated hygienic quality in greater Lomé, Togo: Traditional cooked corn-based dough akpan wrapped in M. cuspidata, M. mannii and M. purpurea species leaves

Mamy Eklou, Komlan Edjèdu Sodjinou, Kodjo Djidjolé Etse, Awidèma Adjolo, Benziwa Nathalie Johnson, Bayi Reine Dossou, Yaovi Ameyapoh, Raoufou Radji, Akossiwoa M-L Quashie, Int. J. Biosci. 27(6), 114-126, December 2025.

Improving the microbiological quality of spices and spice blends using treatments accessible to SMEs/SMIs

Pingdwindé Marie Judith Samadoulougou-Kafando, Korotimi Traoré, Crépin Ibingou Dibala, Aboubacar Sidiki Dao, Josias Nikiema, Idrissa Taram, Adama Pare, Inoussa Salambéré, Donatien Kaboré, Charles Parkouda, Int. J. Biosci. 27(6), 102-113, December 2025.

Twin-row planting practice in village sugarcane (Saccharum officinarum L.) plantations during first ratoon under rainfed conditions in northern Côte d’Ivoire

Allé Yamoussou Joseph, Sawadogo Fatima, Traoré Mohamed Sahabane, Fondio Lassina, Int. J. Biosci. 27(6), 91-101, December 2025.

Prevalence of dengue infection in Delta State, Nigeria

P. A. Agbure, O. P. G. Nmorsi, A. O. Egwunyenga, Int. J. Biosci. 27(6), 82-90, December 2025.