Isolation, Characterization and Control of Bacteria from Failed Root Canal Treatment

Paper Details

Research Paper 20/08/2022
Views (1118)
current_issue_feature_image
publication_file

Isolation, Characterization and Control of Bacteria from Failed Root Canal Treatment

Shakila Sharmin, Farzana Ashrafi Neela
Int. J. Biosci. 21(2), 378-383, August 2022.
Copyright Statement: Copyright 2022; The Author(s).
License: CC BY-NC 4.0

Abstract

This cross-sectional type of descriptive study was carried out to isolates, characterization and control of bacteria from failed root canal treatment. The sample size was 101 which was selected purposively. Partially structured questionnaire was used to collect data from the respondents by face to face interview. All efforts were made to collect data accurately. For open questions, the respondents were asked in such a manner way so that they could speak freely and explain their opinion in a normal and neutral way. In total 101 patients 72 were male and 29 were female and the age group between 11-70 years. The first resistance antibiotic is Cephradine and second resistance Cefuroxime. The first sensitive antibiotic is Amoxyclav and second sensitive Cefuroxime. Total 101 patient Streptococcus spp. found Male 43, Female 54 Staphylococcus spp. Male 23, Female 8 and Enterococcus spp. Male 6, Female 10. The most commonly found bacteria is Streptococcus spp. So this study would help the physician to select the proper antibiotics for RCT and make a new era to control the failure of RCT.

Gomes B, Herrera DR. 2018. Etiologic role of root canal infection in apical periodontitis and its relationship with clinical symptomatology. Brazilian Oral Research 32(suppl 1), 69.

Li X, Zhu XF, Zhang CF, Cathro P, Seneviratne CJ, Shen S. 2013. Endodontic bacteria from primary and persistent endodontic lesions in Chinese patients as identified by cloning and 16S ribosomal DNA gene sequencing. Chinese Medical Journal (Engl).  126, 634–639.

Marsh PD. 2009. Are dental diseases examples of ecological catastrophes?. Microbiology 149, 279–294.

Molander A, Reit C, Dahlén G, Kvist T. 1998. Microbiological status of root-filled teeth with apical periodontitis. International Endodontic Journal 31, 1–7.

Murad CF, Sassone LM, Faveri M, Hirata R, Jr, Figueiredo L, Feres M. 2014. Microbial diversity in persistent root canal infections investigated by checkerboard DNA-DNA hybridization. Journal of Endodontics 40, 899–906.

Narayanan LL, Vaishnavi C. 2010. Endodontic microbiology. Journal of Conservative Dentistry 13, 233–9.

Rôças IN, Siqueira JF, Jr. 2010. Identification of bacteria enduring endodontic treatment procedures by a combined reverse transcriptase–polymerase chain reaction and reverse-capture checkerboard approach. Journal of Endodontics 36, 45–52.

Rôças IN, Siqueira JF, Jr. 2012. Characterization of microbiota of root canal-treated teeth with posttreatment disease. Journal of Clinical Microbiology 50, 1721–1724.

Siqueira J. 2001. Aetiology of root canal treatment failure: why well-treated teeth can fail. International Endodontic Journal 34, 1–10.

Siqueira J, Rocas I, Lopes H, Uzeda M. 1999. Coronal leackage of two root canal sealers containing calcium hydroxide after exposure to human saliva. Journal of Endodontics 25, 14–6.

Tabassum S, Khan FR. 2016. Failure of endodontic treatment: The usual suspects. European Journal of Dentistry 10, 144–7.

Tennert C, Fuhrmann M, Wittmer A, Karygianni L, Altenburger MJ, Pelz K. 2014. New bacterial composition in primary and persistent/secondary endodontic infections with respect to clinical and radiographic findings. Journal of Endodontics 40, 670–677.

Zargar N, Marashi MA, Ashraf H, Hakopian R, Beigi P. 2019. Identification of microorganisms in persistent/secondary endodontic infections with respect to clinical and radiographic findings: bacterial culture and molecular detection. Iranian Journal of Microbiology 1, 120-128.

Related Articles

Sensory acceptability of gnocchi pasta added with different levels of malunggay (Moringa oleifera) leaves and blue ternate (Clitoria ternatea) flowers

Ralph Justyne B. Bague, James Troyo, Proceso C. Valleser Jr.*, Int. J. Biosci. 28(1), 103-114, January 2026.

Spatio-temporal analysis of vegetation cover and socio-environmental implications in Korhogo (Northern Côte d’Ivoire) from 1990-2020

Adechina Olayossimi*, Konan Kouassi Urbain, Ouattara Amidou, Yao-Kouamé Albert, Int. J. Biosci. 28(1), 94-102, January 2026.

Predicting the habitat suitability of Vitellaria paradoxa under climate change scenarios

Franck Placide Junior Pagny*, Anthelme Gnagbo, Dofoungo Kone, Blaise Kabré, Marie-Solange Tiébré6,, Int. J. Biosci. 28(1), 73-83, January 2026.

Performance response dynamics of rabbits (Oryctolagus cuniculus) to locally sourced, on-farm feed ingredients during the growing phase: Implications for the institutional rabbit multiplier project

Roel T. Calagui*, Janelle G. Cadiguin, Maricel F. Campańano, Jhaysel G. Rumbaoa, Louis Voltaire A. Pagalilauan, Mary Ann M. Santos, Int. J. Biosci. 28(1), 65-72, January 2026.

Chronopharmacology: Integration of circadian biology in modern pharmacotherapy

Sangram D. Chikane*, Vishal S. Adak, Shrikant R. Borate, Rajkumar V. Shete, Deepak V. Fajage, Int. J. Biosci. 28(1), 56-64, January 2026.

Evaluation of the impact of floristic diversity on the productivity of cocoa-based agroforestry systems in the new cocoa production area: The case of the Biankouma department (Western Côte d’Ivoire)

N'gouran Kobenan Pierre, Zanh Golou Gizele*, Kouadio Kayeli Anaïs Laurence, Kouakou Akoua Tamia Madeleine, N'gou Kessi Abel, Barima Yao Sadaiou Sabas, Int. J. Biosci. 28(1), 44-55, January 2026.

Utilization of locally sourced feed ingredients and their influence on the growth performance of broiler chickens (Gallus gallus domesticus): A study in support of the school’s chicken multiplier project

Roel T. Calagui*, Maricel F. Campańano, Joe Hmer Kyle T. Acorda, Louis Voltaire A. Pagalilauan, Mary Ann M. Santos, Jojo D. Cauilan, John Michael U. Tabil, Int. J. Biosci. 28(1), 35-43, January 2026.