Isolation of culturable, extended spectrum beta lactamase producing Escherichia coli from fish and fish waste from local fish market
Paper Details
Isolation of culturable, extended spectrum beta lactamase producing Escherichia coli from fish and fish waste from local fish market
Abstract
Faecal indicator patterns of antibiotic susceptibility of Escherichia coli was investigated in fresh fish purchased at retail market. The phenotypic characteristics of antibiotic resistance were investigated in 430 fresh seafood samples of ESBL E. coli (fresh fish, fish waste, and associated environment). Sixty ESBL-positive E. coli were recovered from them. A significant number of isolates were resistant to amoxicillin (98.4%), cefepime (91.9%), and both cefepime and ceftazidime (91.1%). Colistin (100%) was shown to have a relatively higher susceptibility than cefotaxime-clavulanic acid (85.5%) or amoxyclav. Over three antibiotics were resistant to all 60 isolates. The EC01 and EC59 isolates were resistant to 14 different antibiotics. Cefotaxime had MIC values of 1024g/ml for 87% of the isolates. Twenty isolates tested positive for resistance to multienzyme MICTM strips.
Akin BS. 2016. Contaminant Properties of Hospital Clinical Laboratory Wastewater: A Physiochemical and Microbiological Assessment. J Environ Protect 7, 635-642. DOI: 10.4236/jep.2016.75057.
Aruna K, Mobashshera T. 2012 Prevalence of extended spectrum beta-lactamase production among uropathogens in south Mumbai and its antibiogram pattern. EXCLI J 11, 363-72. PMID: 27418912, PMCID PMC4942789.
Baron S, Hadjadj L, Rolain JM, Olaitan AO. 2016. Molecular mechanisms of polymyxin resistance: knowns and unknowns. International journal of antimicrobial agents 48(6), 583-591. https://doi.org/10.1016/j.ijantimicag.2016.06.023
Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P, Jacoby GA, Kishony R, Kreiswirth BN, Kutter E, Lerner SA. 2011. Tackling antibiotic resistance. Nature Reviews Microbiology 9(12), pp.894-896. https://doi.org/ 10.1038 /nrmicro2693
Clinical and Laboratory Standards Institute. 2018. Performance standards for antimicrobial susceptibility testing; 28th informational supplement 2018; CLSI document M100-S28. Clinical and Laboratory Standards Institute, Wayne, PA.
Divyashree M, Kumar DV, Ballamoole KK, Shetty V, Chakraborty A, Karunasagar I. 2019. Occurrence of antibiotic resistance among gram-negative bacteria isolated from effluents of fish processing plants in and around Mangalore. Int. J. Environ. Health Res 30, pp.653-660.
Founou LL, Founou RC, Essack SY. 2016. Antibiotic resistance in the food chain: A developing country-perspective. Front Microbiol 7, 1881. DOI: 10.3389/fmicb.2016.01881.
Gomes TAT, Elias WP, Scaletsky ICA, Guth BEC, Rodrigues JF, Piazza RMF, Ferreira LCS, Martinez MB. 2016. Diarrheagenic Escherichia coli. Braz. J. Microbiol. 47 (Suppl. 1), 3-30. https:// doi.org /10.1016/j.bjm.2016.10.015 .
Kumar HS, Karunasagar I, Karunasagar I, Teizou T, Shima K, Yamasaki S. 2004. Characterisation of Shiga toxin-producing Escherichia coli (STEC) isolated from seafood and beef. FEMS Microbiology Letters 233, 173–178. https://doi.org/10.1016/j.femsle.2004.02.008
Lekshmi M, Ammini P, Kumar S, Varela MF. 2017. The food production environment and the development of antimicrobial resistance in human pathogens of animal origin. Microorganisms 5(1), p.11. DOI: 10.3390/microorganisms5010011
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL. 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical microbiology and infection 18(3), pp.268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x.
Mazel D, Davies J. 1999. Antibiotic resistance in microbes. Cellular and Molecular Life SciencescmLS 56, pp.742-754.
McDanel J, Schweizer M, Crabb V, Nelson R, Samore M, Khader K, Blevins AE, Diekema D, Chiang HY, Nair R, Perencevich E. 2017. Incidence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella infections in the United States: a systematic literature review. Infection control & hospital epidemiology 38(10), pp. 1209-1215.
Olaitan AO, Thongmalayvong B, Akkhavong K, Somphavong S, Paboriboune P, Khounsy S, Morand S, Rolain JM. 2015. Clonal transmission of a colistin-resistant Escherichia coli from a domesticated pig to a human in Laos. Journal of Antimicrobial Chemotherapy 70(12), pp.3402-3404. https://doi.org/10.1093/jac/dkv252
Pitout JD. 2008. MultiresistantEnterobacteriaceae: new threat of an old problem. Expert review of anti-infective therapy 6(5), pp.657-669. DOI: 10.1586 /14787210.6.5.657
Prakasan S, Prabhakar P, Lekshmi M, Kumar S, Nayak BB. 2018. Isolation of Shiga toxin-producing Escherichia coli harboring variant Shiga toxin genes from seafood. Veterinary World 11(3), p.379. DOI: 10.14202/vetworld.2018.379-385
Sanath Kumar H, Otta SK, Karunasagar I, Karunasagar I. 2001. Detection of Shiga-toxigenic Escherichia coli (STEC) in fresh seafood and meat marketed in Mangalore, India by PCR. Lett. Appl. Microbiol 33, 334-338. [CrossRef]. DOI: 10.1046 /j.1472-765x.2001.01007.x
Sehgal R, Kumar Y, Kumar S. 2008. Prevalence and geographical distribution of Escherichia coli O157 in India: a 10-year survey. Transactions of the Royal Society of Tropical Medicine and Hygiene 102(4), pp.380-383. DOI: 10.1016/j.trstmh.2008.01.015
Sharma DR, Pradhan B, Mishra SK. 2010. Multiple drug resistance in bacterial isolates from liquid wastes generated in central hospitals of Nepal. Katmandu Univ Med J 8, 40-44. DOI: 10.3126 /kumj.v8i1.3220
Sheng WH, Badal RE, Hsueh PR. 2013. Distribution of extended-spectrum β-lactamases, AmpC β-lactamases, and carbapenemases among Enterobacteriaceae isolates causing intra-abdominal infections in the Asia-Pacific region: results of the study for Monitoring Antimicrobial Resistance Trends (SMART). Antimicrobial agents and chemotherapy 57(7), pp.2981-2988.
Singh AS, Nayak BB, Kumar SH. 2020. High prevalence of multiple antibiotic-resistant, extended-spectrum β-lactamase (ESBL)-producing Escherichia coli in fresh seafood sold in retail markets of Mumbai, India. Veterinary Sciences 7(2), p.46. https://doi.org /10.3390/vetsci7020046
Tamta S, Kumar ORV, Singh SV, Pruthvishree BS, Karthikeyan R, Rupner R, Sinha DK, Singh BR. 2020. Antimicrobial resistance pattern of extended-spectrum β-lactamase-producing Escherichia coli isolated from fecal samples of piglets and pig farm workers of selected organized farms of India. Vet World. 13(2), 360-363. DOI: 10.14202/vetworld.2020.360-363. Epub 2020 Feb 26. PMID: 32255980; PMCID: PMC7096294.
Van Boeckel TP, Pires J, Silvester R, Zhao C, Song J, Criscuolo NG, Gilbert M, Bonhoeffer S, Laxminarayan R. 2019. Global trends in antimicrobial resistance in animals in low-and middle-income countries. Science 365(6459), p.eaaw 1944. DOI:10.1126/science.aaw1944.
Roopa Niroli, Vandana Rathod, Narmada Talloli, Dattu Singh, Ravi Talikote, Sujata Hosmani, Krishna Rayudu, Shajji Dawood (2023), Isolation of culturable, extended spectrum beta lactamase producing Escherichia coli from fish and fish waste from local fish market; IJB, V23, N2, August, P234-239
https://innspub.net/isolation-of-culturable-extended-spectrum-beta-lactamase-producing-escherichia-coli-from-fish-and-fish-waste-from-local-fish-market/
Copyright © 2023
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0