Lethal effects of tungsten and boric acid, and three garlic, basil and caraway essential oils on Amitermes vilis (Isoptera: termitidae) and its endosymbiont’s cellulolytic activity

Paper Details

Research Paper 01/07/2016
Views (357) Download (11)
current_issue_feature_image
publication_file

Lethal effects of tungsten and boric acid, and three garlic, basil and caraway essential oils on Amitermes vilis (Isoptera: termitidae) and its endosymbiont’s cellulolytic activity

Alborz Saidi, Sohrab Imani, Nader Hassanzadeh, Ali Ahadiyat
J. Bio. Env. Sci.9( 1), 1-10, July 2016.
Certificate: JBES 2016 [Generate Certificate]

Abstract

Termites are considered as one of the most important and largest groups of insects in terrestrial ecosystems that decompose lignocelluloses. Isolation and characterization of cellulolytic strains from termites will also provide information for understanding the efficient mechanism of lignin degradation in termites. In the present study, some termite specimens were collected from traps in “Khojir” Protected Area in Jajrud district of Pardis County, Tehran Province, Iran, and all were identified as Amitermes vilis. Five bacterial isolates in charge of decomposing celluloses were extracted from termite’s gut. The isolates ASB1, ASB2, ASB3 and ASB5 were identified as Bacillus cereus, B. circulans, B. circulans and B. licheniformes, respectively. A Gram-negative bacterium encoded ASB4 was also characterized but not precisely identified. In order to determine the amount of cellulolytic activities of the strains ASB1 and ASB4, both were grown on Cellulose Congo red agar medium. The clear zones around the mass colonies were measured 5 and 4 mm, respectively. Subsequently, the amount of absorbed glucose was measured by spectrophotometery. The effects of garlic, caraway and basil essential oils along with two mineral compounds, boric acid and tungsten were examined against cellulolytic activities of the five bacterial isolates by congo red assay. All tests were performed with three different concentrations of 10, 50 and 100 ppm in three replicates. The results showed a significant reduction in the cellulolytic activity of all tested bacterial isolates at 100 ppm. The latter was considered a fatal dose for the Amitermes vilis termite.

VIEWS 12

Acharya T. 2014. Salt Tolerance Test for Enterococcus species: Principle, Procedure and results, Biochemical tests in Microbiology.

André S, Zuber F, Remize F. 2013. Thermophilic spore-forming bacteria isolated from spoiled canned food and their heat resistance. Results of a French ten-year survey, Inter. J. Food Microbiol 165, 134-143.

Bayon IL, Ansard D, Brunet C, Girardi S, Paulmier I. 2000. Biocontrol of Reticulitermes santonensis by entomopathogenic fungi improvement of the contamination process. The International Research Group on Wood Protection.

Bignell DE, Roisin Y, Lo N. 2010. Biology of Termites: a Modern Synthesis; Springer Dordrecht Heidelberg London New York Press.

Blomquist  GJ,  Howard  RW,  McDaniel  CA. 1979. Biosynthesis of the cuticular hydrocarbons of the termite Zootermopsis angusticollis (Hagen). Incorporation of propionate into dimethylalkanes. Insect Biochem 9, 371–374.

Breznak JA, Brune A. 1994. Role of microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Entomol 39, 453–487.

Breznak JA, Switzer JM. 1986. Acetate synthesis from H2 plus CO2 by termite guts microbes. Appl. Environ. Microbiol 52, 623–630.

Brune A, Emerson D, Kühl MJ, Breznak A. 1995. The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl Environ Microbiol 61, 2681–2687.

Brune A, Ohkuma M. 2010. Role of the Termite Gut Microbiota in Symbiotic Digestion; Springer Dordrecht Heidelberg London Press 439-475.

Brune A, Ohkuma M. 2010. Role of the Termite Gut Microbiota in Symbiotic Digestion; Springer Dordrecht Heidelberg London Press 439-475.

Brune A. 2006. Symbiotic associations between termites and prokaryotes. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The Prokaryotes: symbiotic assoc, biotechnol, appl microbiol, Springer 1, 439–474.

Burt S. 2004. Essential oils: their antibacterial properties and potential applications in foods a review; Int. J. Food Microbiol 94, 223–253.

Cappuccino J, Sherman N. 1992. Microbiology, A Laboratory Manual. The Benjamin/Cummings Publishing Company, Inc 462.

Dickey DA, Fuller WA. 1979. Distribution of the Estimators for Autoregressive Time Series with a Unit Root, J. American Statistical Assn 74, 427-431.

Dolan MF. 2001. Speciation of termite gut protists: the role of bacterial symbionts; Int Microbiol 4, 203– 208.

Gautam SP, Bundela PS, Pandey, AK, et al. 2012. Diversity of Cellulolytic Microbes and the Biodegradation of Municipal Solid Waste by a Potential Strain, Int. J. Microbiol.

Ghayourfar R. 2005. Three new species of termite from Iran (Isoptera, Termitidae), Zoology in the Middle East 34, 61-66.

Ghose TK. 1987. Measurement of cellulase activities; Pure & Appl. Chem 59, 257-268.

Gupta P, Samant K, Sahu A. 2012. Isolation of Cellulose-Degrading Bacteria and Determination of Their Cellulolytic Potential; Int. J. Microbiol 2-5.

Hungate RE. 1943. Quantitative analyses on the cellulose fermentation by termite protozoa. Ann Entomol. Soc. Am 36, 730–739.

Husseneder C, Sethi A, Foil L, Delatte J. 2010. Testing Protozoacidal Activity of Ligand-lytic Peptides against Termite Gut Protozoa in vitro (Protozoa Culture) and in vivo (Microinjection into Termite Hindgut); J. Visual. Exper 46, 1-6.

Ijong FG. 2003. Uji IMVIC. Uraian Teoritis Proses Biokimianya. Laboratorium Mikrobiologi Hasi Perikanan. FPIK Unsrat. Manado.

Jayashree R, Vasudevan N. 2007. Persistence and distribution of endosulfan under field conditions, Environ Monit Assess 131, 475-87.

Jurick WM, Vico I, Whitaker VL, et al. 2012. Application of the 2-Cyanoacetamide methods for spectrophotometric Assay of cellulose enzyme activity, Plant pathol. J 11, 38-41.

Kane MD, Breznak JA. 1991. Acetonema longum gen. nov. sp. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis. Arch. Microbiol 156, 91–98.

Katsuda Y, Nakayama K. 2004. Tomoko; Field tests of molybdenum and tungsten baits for termite control; the third Conference of Pacific Rim Termite Research group Guangzhou, P.R. China 3, 57-61.

Kim YK, Lee S, Ch Cho YY, Oh HJ, Hwan KO, Y. 2012. Isolation of Cellulolytic Bacillus subtilis Strains, J. Agricul. Enviro.; ISRN Microbiology 10, 21-30.

Koenig H. 2005. Bacillus species in the intestine of termites and other soil invertebrates; J Appl. Microbiol 101, 620-627.

König H, Varma A. 2006. Intestinal Microorganisms of Termites and Other Invertebrates; Springer-Verlag Berlin Heidelberg 6, 34-43.

Lay BW. 1994. Analisa Mikroba di Laboratorium. PT. Raja GRafindo Persada. Jakarta 168 Hal.

Leboffe  Michael  J,  Burton  E. 2008. Pierce. Microbiology: Laboratory Theory & Application. Briefed. Englewood, CO: Morton Press.

Lo N, Tokuda G, Watanabe H. 2010. Evolution and Function of Endogenous Termite Cellulases; Springer Dordrecht Heidelberg London New York 51-67.

Lu WJ, Wang HT, Nie YF, et al. 2004. Effect of inoculating flower stalks and vegetable waste with ligno-cellulolytic microorganisms on the composting process, J. Environ. Sci. and Health, Part B 39, 871– 887.

Nazzaro F, Fratianni F, Martino LD, Coppola R, De Feo V. 2013. Effect of Essential Oils on Pathogenic Bacteria; Pharm. J 6, 1451-1474.

Ngangi J, Pelealu J, Warouw J, Mandey L. 2013. Isolation and Activity of Cellulolytic Bacteria Isolated from Hindgut of Odontotermes sp. a Subteran Termite on Wasian (Elmerrelia celebica L.) an Endemic Wood to North Sulawesi 2, 8-16.

O’Brien RW, Slaytor M. 1982. Role of microorganisms in the metabolism of termites; Australian J. Biol. Sci 35, 239-262.

Odelson DA Breznak JA. 1983. Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl. Environ. Microbiol 45, 1602–1613.

Ohkuma M. 2003. Termite symbiotic systems: efficient biorecycling of lignocelluloses. Appl Microbiol Biotechnol 61, 1–9.

Patra AK, Yu Z. 2012. Effects of Essential Oils on Methane Production and Fermentation by, and Abundance and Diversity of, Rumen Microbial Populations; Appl. Enviro. Microbial 78, 4271-4280.

Rahimzadeh A, Rashid M, Ganjan A, Naseri B. 2012. Laboratory evaluation of Metarhizium anisopliae (metschnikoff) for controlling Amitermes vilis (Hagen) and Microcerotermes gabrielis (Weidner) (Isoptera:Termitidae),J.crop port 1, 27-34.

Sangiliyandi G, Kannan TR, Chandra Raj K, Gunasekaran P. 1999. Separation of Levan-formation and Sucrose-hydrolysis Catalyzed by Levansucrase of Zymomonas mobilis Using in vitro Mutagenesis, Braz. arch. biol. Technol 42(4).

Saptarini NM, Indriyati W. 2014. Isolation of cellulolytic bacteria from termites with cellulose of corn cobs as a carbon source; Int. J. Pharm. Sci 6, 215-217.

Scheffrahn RH, Huchet Jb. 2010. A new termite species (Isoptera: Termitidae: Termitinae: Amitermes) and first record of a Subterranean Termite from the Coastal Desert of South America; Zootaxa, J. Magnolia Press 65-68.

Skerman VBD. 1967. A Guide to the Identification of the Genera of Bacteria, 2nd ed. Williams & Wilkins, Baltimore.

Strassert J. 2010. The symbioses of termite gut flagellates and their bacterial endo- and ectosymbionts: analysis of ultrastructure, phylogeny, and cospeciation; doctoral dissertation in biology, chemistry and medicine in Berlin University, Germany.

Sugimoto AD, Bignell E, MacDonald JA. 2000. Global impact of termites on the carbon cycle and atmospheric trace gases. Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht 409–435.

Sun OG, Park L, Kyoung IK, Lim H. 2007. Fumigant Activity of Essential Oils and Components of Illicium verum and Schizonepeta tenuifolia Against Botrytis cinerea and Colletotrichum gloeosporioides; J. Microbiol. Biotechnol 17, 1568–1572.

Tiwari  BK,  Valdramidis  VP,  O’Donnel  CP, Muthukumarappan K, Bourke P, Cullen PJ. 2009. Application of natural antimicrobials for food preservation; J. Agric. Food Chem 57, 5987–6000.

Trager W. 1934. The cultivation of a cellulose-digesting flagellate, Thrichomonas termopsidis, and of certain other termite protozoa; Arch. Protistenk 83, 264-269.

Upadhyaya SK, Manandhar A, mainali H, Pokhrel AR, Rijal A, Pradhan B, and Koirala B. 2012. Isolation and Characterization of Cellulolytic Bacteria from Gut of Termite; Rentech Symposium Compendium 1, 14-18.

Valadares  GR,  Ferreyra  D,  Defago  MT, Carpinella MC, Palacios S. 1999. Effects of Melia azedarach   on  Triatoma   infestans.   Fitopatologia Brasileira 70, 421- 424.

Wiwat  C,  Sillapee  J.  2011.  Prospecting  for Cellulase   Enzymes   Based   on   Sequences   and Functional   Screening,   Metagenomic   Libraries, Mahidol University J. Pharma. Sci 38, 32-46.