Macrophytes with Phytoremediation Potential

Paper Details

Research Paper 01/06/2022
Views (549) Download (185)
current_issue_feature_image
publication_file

Macrophytes with Phytoremediation Potential

Horacio Factura, Dennis A. Apuan
Int. J. Biosci.20( 6), 240-245, June 2022.
Certificate: IJB 2022 [Generate Certificate]

Abstract

Macrophytes can remove and degrade pollutants in soil and water which basically refers to phytoremediation. The objective of this study was to identify locally growing macrophyte species in Cagayan de Oro (CDO) city and determine abundance. Quadrat method was used and a plant expert was consulted. Eighteen plant species were identified and the 5 most abundant were: Brachiaria mutica, Ipomoeae triloba, Ipomoeae aquatica, Commelina diffusa and Panicum maximum. Various literatures have reported scientific evidences on the capacity of the species to absorb and accumulate metals and pollutants present in soil or water. In conclusion, CDO has a number of macrophytes with phytoremediation potential for wastewater treatment.

VIEWS 88

Borines MLM, Calibo CL, Loreto MTP, Tulin EE. 2019. Potentials of Aquatic Weeds (Ipomoea aquatica, Sphenoclea zeylanica, Pistia stratiotes) for Cadmium Phytoremediation. Journal of Science, Engineering and Technology 7, 68-76.

Chatterjee S, Mitra A, Datta S, Veer V, Gupta DK. 2013. Chapter 1 Phytoremediation Protocols: An Overview.  D.K. Gupta (ed.), Plant-Based Remediation Processes, Soil Biology 35. http://dx.doi.org/10.1007/978-3-642-35564-6_1

Coulibaly H, Messou A, Ouattara JMP, Coulibaly L. 2020. Phytoextraction Capacity of Panicum maximum Grown on Synthetic Heavy Metals Contaminated Soil. Trends in Applied Sciences Research 15(4), 281-292, 2020, ISSN 1819-3579 http://dx.doi.org/10.3923/tasr.2020.281.292

Coulibaly H, Ouattara PJM, Messou A, Coulibaly L. 2021. Phytoextraction of Trace Metals (Cd, Ni and Pb) by Panicum maximum Grown on Natural Soil. Open Journal of Applied Sciences 11, 929-945. https://doi.org/10.4236/ojapps.2021.118068

Dhote S, Dixit S. 2009. Water Quality Improvement through Macrophytes-A Review. Environmental Monitoring and Assessment 152, 149-153. https://doi.org/10.1007/s10661-008-0303-9

Dushenkov S, Vasudev D, Kapulnik Y, Gleba D, Fleisher D, Ting KC, Ensley B. 1997. Removal of uranium from water using terrestrial plants. Environmental Science and Technology 31, 3468–3474.

Gabrielson J, Perkins M, Welch E. 1984. Uptake, Translocation and Release of PHOSPHORUS BY ‘ELODEA DENSA’. U.S. Environmental Protection Agency, Washington, D.C., EPA/600/J-84/071 (NTIS PB84232693), 1984.

Garcia MRL, Bangsal CJS, Camara JS. 2019. Phytoextraction Potential of Chamber Bitter Phyllanthus niruri Linn.) and Climbing Dayflower (Commelina diffusa Burm. F.) in Low-to-high Concentration of Lead and Copper in Artificially-contaminated Soil. Philippine Journal of Natural and Social Sciences 1(1).

Hanafiah MM, Zainuddin MF, Nizam NUM, Halim AA, Rasool A. 2020.  Phytoremediation of aluminum and iron from industrial wastewater using Ipomea aquatica and Centella asiatica. Applied Sciences 10, 3064.

Haokip N, Gupta A. 2020. Phytoremediation of Chromium and Manganese by Ipomoea aquatica Forssk. from aqueous medium containing Chromium-Manganese mixtures in microcosms and mesocosms. Water and Environment Journal 35(3). https://doi.org/10.1111/wej.12676

Kumar S, Kumar J, Singh S, Kumar S, Arya SS. 2020. LEAD (PB) PHYTOREMEDIATION POTENTIAL ASSESSMENT OF BRACHIARIA MUTICA L. (PARA GRASS) AND CYPERUS ROTUNDUS L. (NUT GRASS) FROM AQUEOUS SOLUTION. Plant Archives Volume 20 No. 2, pp. 6051-6056 e-ISSN: 2581-6063 (online), ISSN: 0972-5210.

McAndrew B, Ahn C, Spooner J. 2016. Nitrogen and Sediment Capture of a Floating Treatment Wetland on an Urban Stormwater Retention Pond—the Case of the Rain Project, Sustainability 8(10), p 972. https://doi.org/10.3390/su8100972.

Messou A, Coulibaly L, Doumbia L, Gourene G. 2013. Plants diversity and phytoaccumulators identification on the Akouedo landfill (Abidjan, Côte d’Ivoire). African Journal of Biotechnology 12, 253–264.

Olatunji OS, Ximba BJ, Fatoki OS, Opeolu BO. 2014. Assessment of the phytoremediation potential of Panicum maximum (guinea grass) for selected heavy metal removal from contaminated soils. African Journal of Biotechnology 13(19), p 1979-1984, 7 May, 2014. https://doi.org/10.5897/AJB2014.13635

Roongtanakiat N, Sudsawad P, Sudsawad N. 2010. Uranium absorption ability of sunflower, vetiver and purple guinea grass. Kasetsart Journal: Natural Science 44, 182–190.

Setia RC, Kaur N, Setia N, Nayyar H. 2008. Heavy Metal Toxicity in Plants and Phytoremediation.  Crop Improvement: Strategies and Applications z Editors: R.C. Setia, Harsh Nayyar and Neelam Setia © 2008 I.K. International Publishing House Pvt. Ltd., New Delhi, p 206-218.

Suherman, Rahmawati S, Said I, Nurbaya Armiyanti S, Thamrin N. 2021. The use of water spinach plants (Ipomoea aquatica Forsk.) for phytoremediation of hospital waste. Journal of Physics: Conference Series 2126(1), id.012026, p 7.

Ullah S, Mahmood T, Iqbal Z, Naeem A, Ali R, Mahmood S. 2019. Phytoremediative potential of salt-tolerant grass species for cadmium and lead under contaminated nutrient solution, International Journal of Phytoremediation 21(10), 1012-1018. https://doi.org/10.1080/15226514.2019.1594683

United States Environmental Protection Agency (USEPA). Indicators: Macrophytes. https://www.epa.gov/national-aquatic-resource-surveys/indicators-macrophytes

United States Environmental Protection Agency (USEPA). The Sources and Solutions: Wastewater. https://www.epa.gov/nutrientpollution/sources-and-solutions-wastewater

United Nations. 2018. 68% of the world population projected to live in urban areas by 2050, says UN. https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html

Xing W, Wu H, Hao B, Liu G. 2013. Metal accumulation by submerged macrophytes in eutrophic lakes at the watershed scale. Environmental Science and Pollution Research Int. 2013 Oct; 20(10), 6999-7008. https://doi.org/10.1007/s11356-013-1854-z.