Mitigation of salt stress induced inhibition on reproductive growth of maize (Zea mays L.) by supplemental sulfur

Paper Details

Research Paper 01/08/2018
Views (369) Download (13)
current_issue_feature_image
publication_file

Mitigation of salt stress induced inhibition on reproductive growth of maize (Zea mays L.) by supplemental sulfur

Alia Riffat
Int. J. Biosci.13( 2), 240-256, August 2018.
Certificate: IJB 2018 [Generate Certificate]

Abstract

Among various approaches devised to endure the adverse effects of salinity, the use of various nutrients is very economical and shot gun approach. In macronutrients, sulfur has considerable importance in inducing salt tolerance in plants. Sulfur metabolites become very high in salinity that increases the nutrient availability to plants and increase crop yield. For determining the role of sulfur in enhancing reproductive growth of maize plants under saline conditions, two maize varieties (Agaitti 2003, Pak Afgoi 2003) were treated with various levels of sulfur (40, 80 mM) and salinity (25,75 mm). At fully mature stage, plants were harvested for the determination of various yield related attributes. It was found that salinity lowered all yield related parameters studied in this experiment i-e. length and number of cob per plant, total number of cobs, grains per cob, total number of grains, 50 grain weight, harvest index, total yield per plant, ionic contents (K+, Ca2+, NO3, PO43-, SO42-, K+/Na+, Ca2+/Na+) and forage value parameters (protein, starch, carbohydrate, fiber, ash) and increased the sodium (Na+) contents in maize plants. Pak Afgoi 2003 has more Na+ contents as compared to Agaitti 2003. However, sulfur at 40 mM level not only improved the salt tolerance in both maize varieties by improving yield related attributes, nutrient contents and forage value parameters but also lowered the Na+ contents to reduce the toxic effects of salinity. In core, sulfur application (40 mM) improved the crop yield by developing salt tolerance in maize plants.

VIEWS 12

AbdElgawad H, Zinta G, Hegab MM, Pandey R, Asard H, Abuelsoud W. 2016. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs Frontiers in Plant Science 7, 276. DOI: 10.3389/fpls.2016.00276.

Ahmad MSA, Ashraf M, Ali Q. 2010. Soil salinity as a selection pressure is a key determinant for the evolution of salt tolerance in blue panicgrass (Panicum antidotale Retz.). Flora 205, 37-45. DOI: 10.1016/j.flora.2008.12.002.

Ahmed S. 2009. Effect of soil salinity on the yield and yield components of mungbean. Pakistan Journal of Botany 41, 263-268.

Akram NA, Ashraf M. 2011. Improvement in growth, chlorophyll pigments and photosynthetic performance in salt-stressed plants of sunflower (Helianthus annuus L.) by foliar application of 5-aminolevulinic acid. Agrochimica 55, 94-104.

Ali R, Khan MJ, Khattak RA. 2008. Response of rice to different sources of sulfur (S) at various levels and its residual effect on wheat in rice-wheat cropping system. Soil Environment 27, 131-137.

Ashraf M, Harris PJC. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Science 166, 3-16. DOI. 10.1016/j.plantsci.2003.10.024.

Aslam MI, Mahmood H, Qureshi RH, Nawaz S, Akhtar J, Ahmad Z. 2001. Nutritional role of calcium in improving rice growth and yield under adverse conditions. International Journal of Agriculture and Biology 3, 292-297.

Bano A, Aziz N. 2003. Salt and drought stress in wheat and the role of ABA. Pakistan Journal of Botany 35, 871-883.

Bano A, Fatima M. 2009. Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biological Fertility Soils 45, 405-413.

Beadle CL. 1987. Plant growth analysis. In: Techniques in Bioproductivity and Photosynthesis. 2nd Edition. Coombs J, Hall DO, Long SP and Sacrlock JMO (Ed). Pregamon Press. Oxford New York. USA. p 21- 23.

Blake-Kalff MMA, Hawkesford MJ, Zhao FJ, McGrath SP. 2000. Diagnosing sulfur deficiency in field-grown oilseed rape (Brassica napus L.) and wheat (Triticum aestivum L.). Plant Soil 225, 95-107. DOI: 10.1023/A:102650381

Botella M, Rosado A, Bressan R, Hasegawa P. 2005. Plant adaptive responses to salinity stress. Jenks M, Hasegawa P (Eds), Plant abiotic stress, Blackwell publishing Ltd, Oxford, UK pp. 37-58.

Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248-254. DOI: 10.1016/0003-2697(76)90527-3.

Chao WS, GuYQ, Pautot V, Bray EA, Walling LL. 1999. Leucine aminopeptidase RNAs, proteins, and activities increase in response to water deficit, salinity, and the wound signals systemin, methyl jasmonate, and abscisic acid. Plant Physiology 120, 979-992. DOI: 10.1104/pp.120.4.979.

Collado M, Aulicino M, Molina M, Arturi M. 2010. The use of electrolyte leakage in the evaluation of salinity tolerance at seedling stage in maize (Zea mays L.). Maize Genet Coop News Lett 84.

El-Saidi ME, Hawash M. 1971. The effect of using saline water for irrigation on the growth and chemical properties of Roselle plants (Hibiscus sabdariffa L.). Z. Acker-und Pflanzenbau 134, 251-256.

Endris S, Mohammed MJ. 2007. Nutrient acquisition and yield response of barley exposed to salt stress under different levels of potassium nutrition. International Journal of Environmental Science and Technology 4, 323-330.

Farooq M, Hussain, Wakeel M, Kadambot A, Siddique HM. 2015. Salt stress in maize: effects, resistance mechanisms, and management. A review Agronomy for Sustainable Development 35, 46-481. DOI: 10.1007/s/13593-015-0287-0.

Flowers TJ, Galal HK, Bromham L. 2010. Evolution of halophytes: multiple origins o salt tolerance in land plants. Functional Plant Biology 37, 604-612. DOI: 10.1071/FP09269.

Formet J, Naranjo MA, Roldan M, Serrano R, Vicente O. 2002. Expression of Arabidopsis SR-like splicing proteins confers salt tolerance to yeast and transgenic plants. Plant Journal 30, 511-519.

Gain P, Mannan MA, Pal PS, Hossain MM, Parvin S. 2004. Effect of salinity on some yield attributes of rice. Pakistan Journal of Biologial Sciences 7, 760-762. DOI: 10.3923/pjbs.2004.760.762.

Gill KS. 1979. Effect of soil salinity on grain filling and grain development in barley. Bilogia Plantarum 21, 241-244. DOI: doi.org/10.1007/BF02902204.

Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C. 2010. Food security: the challenge of feeding 9 billion people. Science 327, 812-818.

Gorji T, Tanik A, Sertel E. 2015. Soil salinity prediction, monitoring and mapping using modern technologies. Procedia Earth and Planetary Science 15, 507-512. DOI: 10.1016/j.proeps.2015.08.062.

Gupta VK, Sanjeev K, Singh AK. 2004 Yield and quality of wheat (Triticum aestivum) as influenced by sulphur nutrition and weed management. Indian Journal of Agricultural Sciences 74, 254-256.

Gurmani AR, Bano A, Salim M. 2007. Effect of abscisic acid and 6-benzyladenine on growth and ion accumulation of wheat under salinity stress. Pakistan Journal of Botany 39, 141-149.

Hedge JE, Hofreiter BT. 1962. Carbohydrate chemistry 17. Whistler RL, Be Miller JN, (ed), Academic Press, New York.

Jamal A, Fazli IS, Ahmad S, Kim K, Oh D, Abdin MZ. 2006. Effect of sulfur on nitrate reductase and ATP sulfurylase activities in groundnut (Arachis hypogea L.). Plant Biology 49, 513-517. DOI: 10.1007/BF03031134.

Jamil A, Riaz S, Ashraf M, Foolad MR. 2011. Gene expression profiling of plants under salt stress. Critical Reviews in Plant Sciences 30, 435-458.

Joseph B, Jini D. 2011. Development of salt stress-tolerant plants by gene manipulation of antioxidant enzymes. Asian Journal of Agricultural Research 5, 17-27. DOI: 10.3923/ajar.2011.17.27.

Kafi M, Goldam M. 2000. Effect of water potential and type of osmoticum on seed germination of three crop species of wheat, sugarbeet and chickpea. Agricultural Sciences and Technology 15, 121-133.

Kafi M, Stewart WS, Borland AM. 2003. Carbohydrate and proline contents in leaves, roots, and apices of salt-tolerant and salt-sensitive wheat cultivars. Rusian Journal of Plant Physiology 50, 155-162. DOI: 10.1023/A:1022956727141.

Kapoor K, Srivastava A. 2010. Assessment of salinity tolerance of Vinga mungo var. Pu-19 using ex vitro and in vitro methods. Asian Journal of Biotechnology 2, 73-85. DOI: 10.3923/ajbkr.2010.73.85.

Kaya C, Higgs D, Kirnak H. 2001. The effects of high salinity (NaCl) and supplementary phosphorus and potassium on physiology and nutrition development of spinach. Bulgarian Journal of Plant Physiology 27, 47-59.

Kaya C, Kirnak H, Higgs D, Saltali K. 2002. Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Scientia Horticulturae 93, 65-74. DOI: 10.1016/S0304-4238(01)00313-2.

Keating BA, Fisher MJ. 1985. Comparative tolerance of tropical grain legumes to salinity. Australian Journal of Agricultural Research 36, 373-383. DOI: 10.1071/AR9850373.

Kerkeb L, Donaire JP, Rodriguez-Rosales MP. 2001. Plasma membrane H+-ATPase Activity is involved in adaptation of tomato to NaCl. Physiologia Plantarum 111, 483-490. DOI: 10.1034/j.1399-3054.2001.1110408.x.

Khalid R, Khan KS, Yousaf M, Shabbir G, Subhani A. 2009. Effect of sulfur fertilization on rapeseed and plant available sulfur in soils of Pothwar, Pakistan. Sarhad Journal of Agriculture 25, 65-71.

Khan MA, Gulzar S. 2003. Light, salinity and temperature effects on the seed germination of perennial grasses. American Journal of Botany 90, 131-134. DOI: 10.3732/ajb.90.1.131.

Kowalenko CG, Lowe LE. 1973 Determination of nitrates in soil extracts. Soil Science Society of America Proceedings 37, 660.

Khan MIR, Asgher M, Iqbal N, Khan NA. 2013. Potentiality of sulfur-containing compounds in salt stress tolerance, in Ecophysiology and Responses of Plants Under Salt Stress, eds Ahmad P., Azooz MM, Prasad MNV (New York, NY: Springer) 443-472. DOI: 10.1007/978.1-4614-4747-4-17.

Khan NA, Khan MIR, Asgher M, Fatma M, Masood A, Syeed S. 2014. Salinity tolerance in plants: revisiting the role of sulfur metabolites. Journal of Plant Biochemistry and Physiology 2,120.

Khosravinejad F, Heydari R, Farboodnia T. 2009. Effect of salinity on organic solutes contents in barley. Pakistan Journal of Biological Sciences 12, 158-162. DOI: 10.3923/pjbs.2009.158.162.

Klikocka H. 2010. Znaczenie siarki w biosferze i nawożeniu roślin. Przem. Chem 89, 903-908.

Kumar P, Pandev SK, Singh BP, Singh SV, Kumar D. 2007. Influence of source and time of potassium application on potato growth, yield, economics and crisp quality. Potato Research 50, 1-13.

Leustek T, Saito K. 1999. Sulphate transport and the assimilation in plants. Plant Physiology 120, 637-643. DOI: 10.1104/pp.120.3.637.

Linghe Z, Shannon MC. 2000. Salinity effects on seedling growth and yield components of rice. Crop Sciences 40, 996-1003. 

Luo YC, Zhang BC, Whent M, Yu L, Wang Q. 2011. Preparation and characterization of zein/chitosan complex for encapsulation of α–tocopherol, and its in vitro controlled release study. Colloids and Surfaces B: Biointerfaces 85, 145-152. DOI: 10.1016/j.colsurfb.2011.02.020

Malhi H, Leach D. 2000. Restore canola yields by correcting sulfur deficiency in the growing season. Proc. 12th Annual Meeting and Conference. Sustainable Farming in the New Millennium. Saskatchewan Soil Conservation Association, Regina, SK, Canada.

Malhi SS, Gan Y, Raney JP. 2007. Yield, seed quality and sulfur uptake of Brassica oilseed crops in response to sulfur fertilization. Agronomy Journal 99, 570-577. DOI: 10.2134/agronj2006.0269.

Malhi SS, Schoenau JJ, Grant CA. 2005. A review of sulfur fertilizer management for optimum yield and quality of canola in the Canadian Great Plains. Canadian Journal of Plant Sciences 85, 297-307.

Malik CP, Srivastava AK. 1985. Textbook of Plant Physiology, Kalyani Publishers, New Dehli, India.

Malik MNA, Makhdum MI, Chaudhry FI. 2000. Sulphur fertilization of field grown cotton (Gossypium hirsutum L.). The Pakistan Cottons (in press).

Maqsood T, Akhtar J, Farooq MR, Haq MA, Saqib ZA. 2008. Biochemical attributes of salt tolerant and salt sensitive maize cultivars to salinity and potassium nutrition. Pakistan Journal of Agricultural Sciences 45, 1-5.

Miranda D, Fischer G, Ulrichs C. 2010. Growth of cape gooseberry (Physalis peruviana L.) plants affected by salinity. Journal of Applied Botany and Food Quality 83, 175-181.

Munns R, James RA, Lauchli A. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany 57, 1025-1043. DOI: 10.1093/jxb/erj100.

Munns R. 2002. Comparative physiology of salt and water stress. Plant Cell Environment 25, 239-250. DOI: 10.1046/j.0016-8025.2001.00808.x.

Nahar K, Hasanuzzaman M. 2009. Germination, growth, nodulation and yield performance of three mungbean varieties under different levels of salinity stress Green Farming 2, 825-829.

Neelam C, Nalini P. 2013. Effect of sulfur on the growth, dry matter, tissue sulfur and carbohydrate concentration of Allium sativum L. and Allium cepa L. Indian Journal of Agriculture and Biochemistry 26,182-186.

Nocito FF, Lancilli C, Crema B, Fourcroy P. Davidian JC, Sacchi GA. 2006. Heavy metal stress and sulfate uptake in maize roots. Plant Physiology 141, 1138-1148. DOI: 10.1104/pp.105.076240.

Parida AK, Das AB. 2005. Salt tolerance and salinity effects on plants. A Review Ecotoxicology and Environmental Safety 60, 324-349. DOI: 10.1016/ j.ecoenv.2004.06.010.

Paul D. 2012. Osmotic stress adaptations in rhizobacteria. Journal of Basic Microbiology 52, 1-10.

Prasad B. 2003. Effect of direct and residual effects of different S fertilizers on groundnut and wheat cropping system on typic haplaquent soils. Journal of Plant Nutrition 26, 997-1008. DOI: 10.1081/PLN-120020071.

Rajakumar R. 2013. A study on effect of salt stress in the seed germination and biochemical parameters of rice (Oryza sativa L.) under in vitro condition Asian Journal of Plant Science Research 3, 20-25.

Raza SH, Athar HR, Ashraf M, Hameed A. 2007. Glycine betaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environmental Experimental Botany 3, 368-376. DOI: 10.1016/j.envexpbot.2006.12.009

Riffat A, Ahmed MSA. 2016. Ameliorating adverse effects of salt stress on maize (Zea mays L.) cultivars by exogenous application of sulfur at seedling stage. Pakistan Journal of Botany 48, 1323-3334.

Riffat A. 2017. Effect of sulfur application on ionic contents and compatible osmolytes of maize (Zea mays L.) under saline conditions. 4th Internation Congress on Technology-Engineering and Science- Kuala Lumpur Malaysia (2017-08-05).

Riley NG, Zhao FJ, McGrath SP. 2000. Availability of different forms of sulfur fertilizers to wheat and oilseed rape. Plant Soil 222, 139- 147. DOI: 10.1023/A:1004757503831.

Saito K. 2004. Sulfur assimilatory metabolism. The long smelling road. Plant Physiology 136, 2443-2450. DOI: 10.1104/pp.104.046755.

Shah TR, Prasad K, Kumar P, Yildiz F. 2016. Maize-A potential source of human nutrition and health: A review, cogent food and agriculture 2, 1. DOI: 10.1080/23311932.2016.1166995.

Shahbaz M, Ashraf M, Akram NA, Hanif A, Hameed S, Joham S, Rehman R. 2011. Salt-induced modulation in growth, photosynthetic capacity, proline content and ion accumulation in sunflower (Helianthus annuus L.). Acta Physiologia Plantarum 33, 1113-1122.

Sharma DK, Kushwah SS, Nema PK, Rathore SS. 2011. Effect of sulphur on yield and quality of potato (Solanum tuberosum L.). International Journal of Agricultural Research 6, 143-148. DOI: 10.3923/ijar.2011.143.148.

Sheeren A, Mumta S, Raza S, Khan MA, Solangi S. 2005. Salinity effects on seedling growth and yield components of different inbred rice. Pakistan Journal of Botany 37, 131-139.

Shrivastava P, Kumar R. 2014. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences 22, 123-131. DOI: 10.1016/j.sjbs.2014.12.001.

Singh J, Sharma PC, Sharma SK, Rai M. 2014. Assessing the effect of salinity on the oil quality parameters of Indian mustard (Brassica juncea L. Czern and Coss) using Fourier Transform Near-Infrared Reflectance (FT-NIR) spectroscopy. Grasas y Aceites 65, e009. DOI: 10.3989/gya.063413.

Sullivan DM, Carpenter DE. 1993. Methods of Analysis for Nutritional Labeling. Cholesterol: pp. 102. Arlington, VA, AOAC International.

Tendon HLS. 1993. Methods of Analysis of Soil, Plants, Water and Fertilizers. Fertilization Development and Consultation Organisation, New Delhi, India.

Tester M, Davenpor R. 2003. Na+ tolerance and Na+ transport in higher plants. Annals of Botany 91, 503-527.

Waheed A, Hafiz IA, Qadir G, Murtaza G, Mahmood T, Ashraf M. 2006. Effect of salinity on germination, growth, yield, ionic balance and solute composition of pigeon Pea (Cajanus cajan (L.) Mill). Pakistan Journal of Botany 38, 1103-1117.

Wang J, Liu L, Ling Z, Yang J, Wan C, Jiang C. 2003. Polymer lithium cells with sulphur composites as cathode materials. Electrochimica Acta 48, 1861-1867.

Wang Zhao-Hui, Li Sheng-Xiu, Malhi S. 2008. Effects of fertilization and other agronomic measures on nutritional quality of crops. Journal of Science Food and Agriculture 88, 7-23.

Wolf B. 1982. A comprehensive system of leaf analysis and its use for diagnosing crop nutrient status. Communication in Soil Science and Plant Physiology 13, 1035-1059.

Yoshida S, Forno DA, Cock JK, Gomez KA. 1976. Labortary Manual for Physiological Studies of Rice. IRRI., Los Banos.

Zhuo Y, Zhang Y, Xie G, Xiong S. 2015. Effects of salt stress on biomass and ash composition of switch grass (Panicum virgatum). Acta Agriculture Scaninavica, Section B-Soil Plant Science 65, 300-309.

Zobayed SMA, Afreen F, Kozai T. 2007. Phytochemical and physiological changes in the leaves of St. John’s wort plants under a water stress condition. Environmental Experimental Botany 59, 109-116. DOI: 10.1016/j.envexpbot.2005.10.002.