Molecular analysis of drought-resistant cultivars in selected wheat genotypes

Paper Details

Research Paper 11/12/2024
Views (537)
current_issue_feature_image
publication_file

Molecular analysis of drought-resistant cultivars in selected wheat genotypes

Mustafa Kamal, Shafee Ur Rehman
Int. J. Biosci. 25(6), 468-484, December 2024.
Copyright Statement: Copyright 2024; The Author(s).
License: CC BY-NC 4.0

Abstract

Climate changes and global warming have seriously affected the agriculture industry worldwide. Decrease in water has significantly couse reduction in production and yield of many crops. Wheat is a major cereal crop cultivated around the globe. The current research was conducted to investigate drought resistant cultivars in the selected wheat cultivars. In the present study fifty wheat cultivars, scot markers were used during the experiment. The experiment was planned in Randomized Complete Block Design (RCBD) with 3 replications. The analysis of variance showed highly significant differences among the genotypes. The maximum mean value of plant height, tiller per plant, flag leaf area, spike length, spikelet’s per spike, grain per spike, biological yields, Yield/plant,  1000 grains weight, harvest index,  spikes density, yield per hectare and grain per spike were found in genotypes g10, g31, g35, g12, g28, g49 g20, g20, g3, g47, g39, g20, g46. The genotype g20 showed better result towards biological yield, yield per plant, and yield per hectare that is related with yield associated traits. Scot markers are practiced for 50 wheat genotypes. Such as scot 7, scot 10, scot 13, and scot18 show high level (100%) of polymorphism. No such marker produced monomorphic bands.

Ahmed HG, Khan AS, Khan SH, Kashif M. 2017a. Genome wide allelic pattern and genetic diversity of spring wheat genotypes through SSR markers. International Journal of Agriculture and Biology 19, 1559-65.

Ahmed HG, LI MJ, Khan SH, Kashif M. 2019a. Early selection of bread wheat genotypes using morphological and photosynthetic attributes conferring drought tolerance. Journal of Integrative Agriculture 18(11), 2483-91.

Ahmed HGMD, Khan AS, Kashif M, Khan SH. 2017b. Genetic mechanism of leaf venation and stomatal traits for breeding drought tolerant lines in wheat. Bangladesh Journal of Botany 46(1), 35–41.

Ashfaq MU, Khan AS, Ali ZU. 2003. Association of morphological traits with grain yield in wheat (Triticum aestivum L.). International Journal of Agriculture and Biology 5(3), 262-4.

Barutçular C, Yıldırım M, Koc M, Akıncı C, Toptaş I, Albayrak O, Tanrıkulu A, El Sabagh A. 2016. Evaluation of SPAD chlorophyll in spring wheat genotypes under different environments. Fresenius Environmental Bulletin 25(4), 1258-66.

Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S. 2012. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491(7426), 705-10.

Dixon J. 2009. What causes civil wars? Integrating quantitative research findings. International Studies Review 11(4), 707-35.

Faisal S, Mujtaba SM, Khan MA, Mahboob WA. 2017. Morpho-physiological assessment of wheat (Triticum aestivum L.) genotypes for drought stress tolerance at seedling stage. Pakistan Journal of Botany 49(2), 445-52.

Kahrizi D, Cheghamirza K, Kakaei M, Mohammadi R, Ebadi A. 2010. Heritability and genetic gain of some morphophysiological variables of durum wheat (Triticum turgidum var. durum). African Journal of Biotechnology 9(30), 4687-91.

Kaukab S, Saeed MS, Rehman A. 2014. Genetic analysis for yield and some yield traits in spring wheat. Universal Journal of Agricultural Research 2(7), 272-7.

Khan AD, Khaliq I, Ahmad M, Ahmed HG, Khan AG, Farooq MS. 2018. Comparative performance of spring wheat (Triticum aestivum L.) through heat stress indices. Pakistan Journal of Botany 50(2), 481-8.

Knežević D, Radosavac A, Zelenika M. 2015. Variability of grain weight per spike in wheat grown in different ecological conditions. Acta Agriculturae Serbica 20(39), 85-95.

Kosar F, Akram NA, Ashraf M. 2015. Exogenously-applied 5-aminolevulinic acid modulates some key physiological characteristics and antioxidative defense system in spring wheat (Triticum aestivum L.) seedlings under water stress. South African Journal of Botany 96, 71-7.

Li Y, Li H, Li Y, Zhang S. 2017. Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat. The Crop Journal 5(3), 231-9.

Liu EK, Mei XR, Yan CR, Gong DZ, Zhang YQ. 2016. Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes. Agricultural Water Management 167, 75-85.

Liu X, Zhu X, Pan Y, Li S, Liu Y, Ma Y. 2016. Agricultural drought monitoring: Progress, challenges, and prospects. Journal of Geographical Sciences 26, 750-67.

Maghsoudi K, Emam Y, Ashraf M. 2015. Influence of foliar application of silicon on chlorophyll fluorescence, photosynthetic pigments, and growth in water-stressed wheat cultivars differing in drought tolerance. Turkish Journal of Botany 39(4), 625-34.

Mohibullah M, Rabbani MA, Jahan S. 2011. Genetic variability and correlation analysis of bread wheat (Triticum aestivum L.) accessions. Pakistan Journal of Botany 43.

Mujtaba SM, Faisal S, Khan MA, Mumtaz S, Khanzada B. 2016. Physiological studies on six wheat (Triticum aestivum L.) genotypes for drought stress tolerance at seedling stage. Agric. Res. Technol. Open Access Journal 1(2), 001-5.

Munir M, Chowdhry MA, Malik TA. 2007. Correlation studies among yield and its components in bread wheat under drought conditions. International Journal of Agriculture and Biology 9(2).

Peleg Z, Fahima T, Korol AB, Abbo S, Saranga Y. 2011. Genetic analysis of wheat domestication and evolution under domestication. Journal of Experimental Botany 62(14), 5051-61.

Rehman SU, Bilal M, Rana RM, Tahir MN, Shah MK, Ayalew H, Yan G. 2016. Cell membrane stability and chlorophyll content variation in wheat (Triticum aestivum) genotypes under conditions of heat and drought. Crop and Pasture Science 67(7), 712-8.

Saeidi M, Abdoli M. 2015. Effect of drought stress during grain filling on yield and its components, gas exchange variables, and some physiological traits of wheat cultivars. Journal of Agricultural Science and Technology 17(4), 885-98.

Shahinnia F, Le Roy J, Laborde B, Sznajder B, Kalambettu P, Mahjourimajd S, Tilbrook J, Fleury D. 2016. Genetic association of stomatal traits and yield in wheat grown in low rainfall environments. BMC Plant Biology 16, 1-4.

Steel RG, Torrie JH, Dickey DA. 1997. Principles and procedures of statistics: a biometrical approach.

Tripathi GP, Parde NS, Zate DK, Lal GM. 2015. Genetic variability and heritability studies on bread wheat (Triticum aestivum L.). International Journal of Plant Sciences 10(1), 57-59.

Yang J, Zhang J, Liu K, Wang Z, Liu L. 2006. Abscisic acid and ethylene interact in wheat grains in response to soil drying during grain filling. New Phytologist 171(2), 293-303.

Yu X, Li B, Wang L, Chen X, Wang W, Gu Y, Wang Z, Xiong F. 2016. Effect of drought stress on the development of endosperm starch granules and the composition and physicochemical properties of starches from soft and hard wheat. Journal of the Science of Food and Agriculture 96(8), 2746-54.

Zhu M, Shabala S, Shabala L, Fan Y, Zhou MX. 2016. Evaluating predictive values of various physiological indices for salinity stress tolerance in wheat. Journal of Agronomy and Crop Science 202(2), 115-24.

Related Articles

Muscle type and meat quality of local chickens according to preslaughter transport conditions and sex in Benin

Assouan Gabriel Bonou*, Finagnon Josée Bernice Houéssionon, Kocou Aimé Edenakpo, Serge Gbênagnon Ahounou, Chakirath Folakè Arikè Salifou, Issaka Abdou Karim Youssao, Int. J. Biosci. 27(6), 241-250, December 2025.

Effects of micronutrients and timing of application on the agronomic and yield characteristics of cucumber (Cucumis sativus)

Princess Anne C. Lagcao, Marissa C. Hitalia*, Int. J. Biosci. 27(6), 214-240, December 2025.

Response of different soybean varieties to phosphorus fertilizer microdosing and rhizobium inoculation in the sub-humid zone of Northern Benin

Pierre G. Tovihoudji*, Kamarou-Dine Seydou, Lionel Zadji, Sissou Zakari, Valerien A. Zinsou, Int. J. Biosci. 27(6), 201-213, December 2025.

On-farm validation of black soldier fly larvae meal as a sustainable replacement for shrimp meal in rainbow trout diets in the mid hills of Nepal

Ishori Singh Mahato, Krishna Paudel*, Sunita Chand, Anshuka Bhattarai, Int. J. Biosci. 27(6), 189-200, December 2025.

Insect fauna associated with Cucumis sativus (Cucurbitales: Cucurbitaceae) in Parakou, A cotton-growing area of central Benin

Lionel Zadji*, Mohamed Yaya, Roland Bocco, Prudencia M. Tovignahoua, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, Hugues Baimey, Leonard Afouda, Int. J. Biosci. 27(6), 175-188, December 2025.

First record of two hymenopteran species, Brachymeria excarinata Gahan (Chalcididae) and Pteromalus sp. (Pteromalidae), as hyperparasitoids of Diadegma insulare in Senegal

Babacar Labou*, Etienne Tendeng, Mamadou Diatte, El hadji Sérigne Sylla, Karamoko Diarra, Int. J. Biosci. 27(6), 167-174, December 2025.

Hepatoprotective and antinociceptive effects of terpinolene in streptozotocin-induced diabetic peripheral neuropathic rats

Ravishankar Sarumathi, Muthukumaran Preethi, Chandrasekaran Sankaranarayanan*, Int. J. Biosci. 27(6), 156-166, December 2025.