Monitoring of 17α-methyltestosterone residues in tilapia’s (Oreochromis niloticus) flesh and experimental water after its sex reversal

Paper Details

Research Paper 01/12/2016
Views (666) Download (11)
current_issue_feature_image
publication_file

Monitoring of 17α-methyltestosterone residues in tilapia’s (Oreochromis niloticus) flesh and experimental water after its sex reversal

Nadir Boudjlal Dergal, Marie-Louise Scippo, Guy Degand, Vincent Gennotte, Charles Mélard, Sidi-Mohammed El-Amine Abi-Ayad
Int. J. Biosci.9( 6), 101-113, December 2016.
Certificate: IJB 2016 [Generate Certificate]

Abstract

Tilapias are sexually reversed by hormonal treatment with 17α-methyltestosterone (MT) before introduction in culture unit to avoid over-breeding.  This manipulation can be perceived as a real chemical hazard for consumers and environment. Therefore, this study was undertaken to evaluate the withdrawal of MT residues in tilapia’s flesh treated with 65 mg of MT/kg of impregnated-feed for 28 successive days then enlarged for another three months post-treatment. At the 60th day post-treatment, the average of sex ratio in treated groups (97.78% males and 2.22% females) was significantly different (P<0.001) from the untreated one (48.57% males and 51.43% females). MT residues were analyzed using an ELISA method after liquid/solid extraction. The MT content in flesh was very low at the first day post-treatment (1.59 µg/kg), then continued to decrease significantly (P<0.05) and passed below the detection threshold (0.09 µg/kg) after 60 days post-treatment. The MT concentration in water’s samples was below the detection threshold (0.16 µg/kg) and was insignificant from toxicological point of view.  So from the data collected it can be suggested that MT treatment of tilapia carries no risk for human health and environment.

VIEWS 22

Abucay JS, Mair GC. 1997. Hormonal sex reversal of tilapias: implications of hormone treatment application in closed water systems. Aquaculture Research 28, 841-845. http://dx.doi.org/10.1046/j.1365-2109.1997.00878.x.

Aman CS, Pastor A, Cighetti G, De La Guardia M. 2006. Development of a multianalyte method for the determination of anabolic hormones in bovine urine by isotope-dilution GCMS/MS. Analytical and Bioanalytical Chemistry. 386, 1869-1879. http://dx.doi.org/10.1007/s00216-006-0739-0.

Asad F, Ahmed I, Saleem M, Iqbal T. 2010. Hormonal masculinization and growth performance in Nile tilapia (Oreochromis niloticus) by androgen administration at different dietary protein levels. International Journal of Agriculture and Biology 6(12), 939-943.

Baras E, Melard C. 1997. Individual growth patterns of juvenile Nile tilapia, Oreochromis niloticus (L.): emergence and dynamics of sexual growth dimorphism. In: Fitzsimmons K, Ed. Tilapia Aquaculture. Northeast Regional Agricultural Engineering Service 106, 169-177.

Baras E, Jacobs B, Mélard C. 2001. Effect of water temperature on survival, growth and phenotypic sex of mixed XX–XY/progenies of Nile tilapia Oreochromis niloticus. Aquaculture 192, 187-199.

Barbosa IR, Lopes S, Oliveira R, Domingues I, Soares AMVM, Nogueira AJA. 2013. Determination of 17α-Methyltestosterone in freshwater samples of tilapia farming by High Performance Liquid Chromatography. American Journal of Analytical Chemistry 4, 207-211. http://dx.doi.org/10.4236/ajac.2013.44026

Baroiller JF, D’Cotta H, Bezault E, Wessels S, Hoerstgen-Schwark G. 2009. Tilapia sex determination: where temperature and genetics meet. Comparative Biochemistry and Physiology Part A 153, 30-38. http://dx.doi.org/10.1016/j.cbpa.2008.11.018.

Barry TP, Marwah A, Marwah P. 2007. Stability of 17α-methyltestosterone in fish feed. Aquaculture 271, 523-529. http://dx.doi.org/10.1016/j.aquaculture.2007.05.001

Bhandari RK, Nakamura M, Kobayashi T, Nagahama Y. 2006. Suppression of steroidogenic enzyme expression during androgen-induced sex reversal in Nile tilapia (Oreochromis niloticus). General and Comparative Endocrinology 145, 20-24. http://dx.doi.org/10.1016/j.ygcen.2005.06.014.

Celik I, Guner Y, Celik P. 2011. Effect of orally-administrated 17α-Methyltestosterone at different doses on sex reversal of Nile tilapia (Oreochromis niloticus, Linneaus 1758). Animal and Veterinary Advances 10(7), 853-857. http://dx.doi.org/10.3923/javaa.2011.853.857.

Chakraborty SB, Mazumdar D, Chatterji U, Banerjee S. 2011. Growth of mixed-sex and monosex Nile tilapia in different culture systems. Turkish Journal of Fisheries and Aquatic Sciences 11, 133-140. http://dx.doi.org/10.4194/TRJFAS.2011.0117.

Chu P-S, Lopez M, Serfling S, Gieseker CE, Reimschuessel R. 2006. Determination of 17α-Methyltestosterone in muscle tissues of tilapia, rainbow trout, and salmon using Liquid Chromatography-tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry 54, 3193-3198. http://dx.doi.org/10.1021/jf052701r.

Contreras-Sanchez WM, Fitzpatrick MS, Schreck CB. 2001. Fate of methyltestosterone in the pond environment: detection of MT in pond soil from a CRSP site. In: Gupta A, McElwee K. Burke D, Burright J, Cummings X, Egna H, Editors. Eighteenth Annual Technical Report. Pond Dynamics/Aquaculture CRSP, Oregon State University, Corvallis, Oregon, 79- 82.

Cravedi JP, Delous G, Debrauwer L, Prome D. 1993. Biotransformation and branchial excretion of 17α-methyltestosterone in trout. Drug Metabolism and Disposition 2(21), 377-385.

Dabrowski K, Rodriguez G, Lee K-J, Abiado MAG, Contreras-Sanchez WM, Marquez-Couturier G, Phelps RP. 2004. Studies on fate of methyltestosterone and its metabolites in tilapia and on the use of phytochemicals as an alternative method to produce a monosex population of tilapia. In: Harris R, Courter I, Egna H, Editors. Twenty-First Annual Technical Report. Aquaculture CRSP, Oregon State University, Corvallis, Oregon, 53- 60.

Dergal NB, Abi-Ayad S-ME-A, Degand G, Douny C, Brose F, Daube G, Rodrigues A, Scippo M-L. 2013. Microbial, biochemical and sensorial quality assessment of algerian farmed tilapia (Oreochromis niloticus) stored at 4 and 30°C. African Journal of Food Sciences 7(12), 498-507. http://dx.doi.org/10.5897/AJFS2013.1063

El-Greisy ZA, El-Gamal AE. 2012. Monosex production of tilapia, Oreochromis niloticus using different doses of 17α-methyltestosterone with respect to the degree of sex stability after one year of treatment. The Egyptian Journal of Aquatic Research 38, 59-66. http://dx.doi.org/10.1016/j.ejar.2012.08.005

EU. 2003. Directive 2003/74/EC of the European Parliament and of the Council amending Council Directive 96/22/EC concerning the prohibition on the use in stock farming of certain substances having a hormonal or thyrostatic action and of beta-agonists. Official Journal of the European Union L262, 19-21.

Fagerlund UHM, Dye HM. 1979. Depletion of radioactivity from yearling coho salmon (oncorhynchus kisutch) after extended ingestion of anabolically effective doses of 17α-methyltestosterone-1, 2-3 H. Aquaculture 18, 303-315.

FAO. 2012. The state of world Fisheries and Aquaculture 2012. Rome. 209 p.

Gennotte V, Mafwila Kinkela P, Ulysse B, Akian Djetouan D, Bere Sompagnimdi F, Tomson T, Melard C, Rougeot C. 2015. Brief exposure of embryos to steroids or aromatase inhibitor induces sex reversal in Nile tilapia (Oreochromis niloticus). Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 323, 31-38. http://dx.doi.org/10.1002/jez.1893

Golan M, Levavi-Sivan B. 2014. Artificial masculinization in tilapia involves androgen receptor activation. General and Comparative Endocrinology 207, 50-55. http://dx.doi.org/10.1016/j.ygcen.2014.04.026.

Gomez C, Pozo OJ, Marcos J, Segura J, Ventura R. 2013. Alternative long-term markers for the detection of methyltestosterone misuse. Steroids 78, 44-52. http://dx.doi.org/10.1016/j.steroids.2012.10.008.

Goudie CA, Shelton WL, Parker NC. 1986. Tissue distribution and elimination of radiolabelled methyltestosterone fed to sexually undifferentiated Blue tilapia. Aquaculture 58, 215-226.

Green BW, Teichert-Coddington DR. 2000. Human food safety and environmental assessment of the use of 17a-Methyltestosterone to produce male tilapia in the United States. Journal of the World Aquaculture Society 3(31), 337-357.

Guerrero RDIII. 1975. Use of androgens for production of all male Tilapia aurea (Steindachner). Transactions of the American Fisheries Society 2, 342-347.

Han Y, Ma Q, Lu J, Xue Y, Xue C. 2012. Optimization for subcritical fluid extraction of 17-methyltestosterone with 1,1,1,2-tetrafluoroethane for HPLC analysis. Food chemistry 135, 2988-2993. http://dx.doi.org/10.1016/j.foodchem.2012.07.081.

Hasheesh WS, Marie M-AS, Abbas HH, Eshak MG, Zahran EA. 2011. An evaluation of the effect of 17α-Methyltestosterone hormone on some biochemical, molecular and histological changes in the liver of Nile tilapia; Oreochromis niloticus. Life Science Journal 8(3), 343-358.

Homklin S, Ong SK, Limpiyakorn T. 2011. Biotransformation of 17α-methyltestosterone in sediment under different electron acceptor conditions. Chemosphere 82, 1401-1407. http://dx.doi.org/10.1016/j.chemosphere.2010.11.068.

Homklin S, Ong SK, Limpiyakorn T. 2012. Degradation of 17α-methyltestosterone by Rhodococcus sp. and Nocardioides sp. isolated from a masculinizing pond of Nile tilapia fry. Journal of Hazardous Materials 221-222, 35-44. http://dx.doi.org/10.1016/j.jhazmat.2012.03.072.

Hulak M, Paroulek M , Simek P, Kocour M, Gela D, Rodina M, Linhart O. 2008. Water polluted by 17α-methyltestosterone provides successful male sex inversion of common carp (Cyprinus carpio L.) from gynogenetic offspring. Journal of Applied Ichthyology 24, 707-710. http://dx.doi.org/10.1111/j.1439-0426.2008.01107.x.

Johnstone R, Macintosh DJ, Wright RS. 1983. Elimination of orally administered 17α-Methyltestosterone by Oreochromis mossambicus (tilapia) and Salmo gairdneri (rainbow trout) juveniles. Aquaculture 35, 249-257.

JORADP. 2009. Loi n° 09-03 du 25 février 2009 relative à la protection du consommateur et la répression des fraudes. Journal Officiel de la République Algérienne n°15, p.11.

JORADP. 2010. Décret exécutif n° 10-90 du 10 mars 2010 complétant le décret exécutif n° 04-82 du 18 mars 2004 fixant les conditions et modalités d’agrément sanitaire des établissements dont l’activité est liée aux animaux, produits animaux et d’origine animale ainsi que de leur transport. Journal Officiel de la République Algérienne n°17, p.18.

Junior RP, Vargas L, Valentim-Zabott M, Ribeiro RP, Da Silva AV, Otutumi LK. 2012. Morphometry of white muscle fibers and performance of Nile tilapia (Oreochromis niloticus) fingerlings treated with methyltestosterone or a homeopathic complex. Homeopathy 101, 154-158. http://dx.doi.org/10.1016/j.homp.2012.05.005.

Kefi AS, Kang’Ombe J, Kassam D, Katongo C. 2013. Effect of 17 a-Methyl Testosterone on haematology and histology of liver and heart of Oreochromis andersonii (Castelnau, 1861). Journal of Marine Science: Research & Development 3(3), 1-7. http://dx.doi.org/10.4172/2155-9910.1000130.

Khalil WKB, Hasheesh WS, Marie M-AS, Abbas HH, Zahran EA. 2011. Assessment of the impact of 17α-methyltestosterone hormone on growth, hormone concentration, molecular and histopathological changes in muscles and testis of Nile tilapia;Oreochromis niloticus. Life Science Journal 8(3), 329-343.

Kong N, Song S, Peng J, Liu L, Kuang H, Xu C. 2015. Sensitive, fast, and specific immunoassays for methyltestosterone detection. Sensors 15, 10059-10073. http://dx.doi.org/10.3390/s150510059.

Lu H, Conneely GE, Crowe MA, Aherne M, Pravda M, Guilbault GG. 2006. Screening for testosterone, methyltestosterone, 19-nortestosterone residues and their metabolites in bovine urine with enzyme-linked immunosorbent assay (ELISA). Analytica Chimica Acta 570, 116-123. http://dx.doi.org/10.1016/j.aca.2006.03.108.

Marjani M, Jamili S, Mostafavi PG, Ramin M, Mashinchian A. 2009. Influence of 17-Alpha Methyl Testosterone on masculinization and growth in Tilapia (Oreochromis mossambicus). Journal of Fisheries and Aquatic Sciences 4(1), 71-74.

Marwah P, Marwah A, Lardy H. 2005. Development and validation of a high performance liquid chromatography assay for 17-methyltestosterone in fish feed. Journal of Chromatography B 824, 107-115. http://dx.doi.org/10.1016/j.jchromb.2005.07.005.

Megbowon I, Mojekwu T. 2014. Tilapia sex reversal using methyl testosterone (MT) and its effect on fish, man and environment. Biotechnology 13, 213-216. http://dx.doi.org/10;3923/biotech.2014.213.216

Mei J, Gui JF. 2015. Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish. Science China Life Sciences 58, 124-136.

Mlalila N, Mahika C, Kalombo L, Swai H, Hilonga A. 2015. Human food safety and environmental hazards associated with the use of methyltestosterone and other steroids in production of all-male tilapia. Environmental Science and Pollution Research. 22, 4922-4931. http://dx.doi.org/10.1007/s11356-015-4133-3.

Phelps RP, W Cole, Katz T. 1992. Effect of fluoxymesterone on sex ratio and growth of Nile tilapia, Oreochromis niloticus (L.). Aquaculture and Fisheries Management, 23(4), 405-523.

Pozo OJ, Eenoo PV, Deventer K, Lootens L, Thuyne WV, Parr MK, Schanzer W, Sancho JV, Hernandez F, Meuleman P, Leroux-Roels G, Delbeke FT. 2009. Detection and Characterization of a new metabolite of 17-methyltestosterone. Drug Metabolism and Disposition 37(2), 2153-2162. http://dx.doi.org/10.1124/dmd.109.028373.

Montajami S. 2012. Assessment the impact of 17-methyl testosterone on the growth and survival rate of Golden barb fish, Puntius gelius (Hamilton, 1822). AmericanEurasian Journal of Agricultural & Environmental Sciences 12(8), 1052-1055. http://dx.doi.org/10.5829/idosi.aejaes.2012.12.08.65143.

Rahma A, Kamble MT, Ataguba GA, Chavan BR, Rusydi R, Siska M. 2015. Steroidogenic and thermal control of sex in tilapia (O. niloticus): A review. International Journal of Current Microbiology and Applied Sciences 4(1), 214-229.

Risto U, Hajrulai-Musliu Z, Stojanovska-Dimzoska B, Dimitrieska-Stojkovic E, Todorovic A, Stojkovski V. 2013. Validation of screening method for determination of methyltestosterone in fish. Macedonian Veterinary Review 36(1), 19-23.

Romerio M-PCS, Fenerich-Verani N, Santo De-Campos BE, Da-Silva AS. 2000. Masculinization of Nile tilapia, Oreochromis niloticus, using different diets and different doses of 17-alpha methyl testosterone. Revista Brasileira de Zootecnia 29(3), 654-659. http://dx.doi.org/10.1590/S151635982000000300003.

Rougeot C, Prignon C, Ngouana Kengne CV, Mélard C. 2008. Effect of high temperature during embryogenesis on the sex differentiation process in the Nile tilapia, Oreochromis niloticus. Aquaculture 276, 205-208. http://dx.doi.org/10.1016/j.aquaculture.2008.02.001

Shore LS, Shemesh M. 2003. Naturally produced steroid hormones and their release into the environment. Pure and Applied Chemistry 75, 1859-1871. http://dx.doi.org/10.1351/pac200375111859.

Smith ES, Phelps RP. 2001. Impact of feed storage conditions on growth and efficacy of sex reversal of Nile tilapia. North American Journal of Aquaculture 63,242- 245.

Storey JM, Clark SB, Johnson AS, Andersen WC, Turnipseed SB, Lohne JJ, Burger RJ, Ayres PR, Carr JR, Madson MR. 2014. Analysis of sulfonamides, trimethoprim, fluoroquinolones, quinolones, triphenylmethane dyes and methyltestosterone in fish and shrimp using liquid chromatography-mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 972, 38-47. http://dx.doi.org/10.1016/j.jchromb.2014.09.009. 

Teichert-Coddington D, Manning B, Eya J, Brock D. 2000. Concentration of 17 alpha-methyltestosterone in hormone treated feed: effects of analytical technique, fabrication and storage temperature. Journal of the World Aquaculture Society 31(1), 42-50.

Vick AM, Hayton WL. 2001. Methyltestosterone pharmacolinetics and oral bioavailability in rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology 52, 177-188. http://dx.doi.org/10.1016/S0166-445X(00)00146-6.

Zhang X, Zhang W, Xue L, Zhang B, Jin M, Fu W. 2010. Bioremediation of bacteria pollution using the marine sponge Hymeniacidon perlevis in the intensive mariculture water system of turbot Scophthalmus maximus. Biotechnology & Bioengineering 105(1), 59-68. http://dx.doi.org/10.1002/bit.22522.