Origin of the blood meal of the Aedes aegypti mosquito in five localities in Benin

Paper Details

Research Paper 09/09/2023
Views (431) Download (37)
current_issue_feature_image
publication_file

Origin of the blood meal of the Aedes aegypti mosquito in five localities in Benin

Tchibozo Carine, Yadouleton Anges, Dramane Gado, Hounkanrin Gildas, Adewumi Praise, Joest Hanna
J. Bio. Env. Sci.23( 3), 34-39, September 2023.
Certificate: JBES 2023 [Generate Certificate]

Abstract

With the aim of learning about the multiple origins of blood meal sources in Aedes aegypti in Benin, a study was conducted in five localities from the south to the north of the country (Cotonou, Porto-Novo, Calavi, Dassa and kandi) from June 2020 to October 2021 to capture adult populations of A. aegypti. To achieve this objective, BG-Sentinel and Aedes Gravid traps were set daily inside and outside four randomly selected concessions in each of the above-mentioned sites, three times a week for the duration of the study. Populations of blood-feeding A. aegypti mosquitoes were identified using the Polymerase Chain Reaction (PCR) technique. PCR results were confirmed by sequencing to identify the origin of the blood meal. Out of a total of 3,749 mosquitoes collected, Aedes aegypti (79.22%) and Culex quinquefaciatus (20.08%) were the two main species caught. With a total of 2,970 A. aegypti populations, 2,684 (71.7%) were non-blood-fed, compared with 286 (7.6%) blood-fed. For Culex quinquefasciatus, out of 753 populations caught, 733 (19.5%) were non-gorged versus 20 (0.5%) blood-fed. Research into the origin of the blood meal using the PCR technique showed that out of 1019 mosquitoes analyzed, 987 (96.8%) had taken their blood meal from humans. This result was confirmed by sequencing analysis of PCR-positive pools. The anthropophagous nature of A. aegypti confirmed by the sequencing results during this study remains an important clue in the implementation of arbovirus control strategies, particularly against A. aegypti mosquitoes in Benin.

VIEWS 65

Abe H, Ushijima Y, Loembe MM, Bikangui R, Nguema-Ondo G, Mpingabo PI, Zadeh VR, Pemba CM, Kurosaki Y, Igasaki Y, de Vries SG, Grobusch MP, Agnandji ST, Lell B, Yasuda J. 2020. Re-emergence of dengue virus serotype 3 infections in Gabon in 2016-2017, and evidence for the risk of repeated dengue virus infections. Int. J. Infect. Dis. 91, 129-36

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. outil de recherche d’alignement local de base. J. Mol. Biol. 215, 403-410. DOI: 10.1016 /S0022-2836(05)80360-2.

Bernier UR, Kline DL, Barnard DR, Schreck CE, Yost RA. 2000. Analyse des émanations de peau humaine par chromatographie en phase gazeuse/ spectrométrie de masse. 2. Identification des composés volatils qui sont des candidats attractifs pour le moustique de la fièvre jaune (Aedes aegypti). Chimie anale 72, 747-756. [PubMed : 10701259]

Burkett-Cadena ND, Graham SP, Hassan HK, Guyer C, Eubanks MD, Katholi CR, Unnasch TR. 2008. Blood Feeding Patterns of Potential Arbovirus Vectors of the Genus Culex Targeting Ectothermic Hosts. Am J Trop Med Hyg 79, 809-815.

Cebrián-Camisón S, Martínez-de la Puente J, Figuerola J. 2020. A Literature Review of Host Feeding Patterns of Invasive Aedes Mosquitoes in Europe. Insects 11(12), 848. DOI: 10.3390/insects11120848.

Cova-Garcia P, Sutil E, Rausseo JA. 1966. Mosquitos (Culicinos) de Venezuela : Tomo I and Tomo II. Ministerio de Sanidad y Asistencia Social, Caracas.

Faye O, Ba Y, Faye O, Talla C, Diallo D, Chen R, Mondo M, Ba R, Macondo E, Siby T, Weaver SC, Diallo M, Sall AA. 2014. Urban epidemic of dengue virus serotype 3 infection, Senegal, 2009. Emerg Infect Dis 20(3), 456-9. DOI: 10.3201/eid2003.121885.

Folmer RH, Nilges M, Folkers PJ, Konings RN, Hilbers CW. 1994. A model of the complex between single-stranded DNA and the single-stranded DNA binding protein encoded by gene V of filamentous bacteriophage M13. J Mol Biol 240(4), 341-57. DOI: 10.1006/jmbi.1994.1449. PMID: 8035458.

Forattini OP. 1965. Medical entomology. Volume 2. Culicini: Culex, Aedes and Psorophora. Medical entomology 2.

Fourié T, Luciani L, Amrane S, Zandotti C, Leparc-Goffart I, Ninove L, Nougairède A. 2020. Dengue virus type 1 infection in traveler returning from Benin to France, 2019. Emerg Infect Dis 26(8), 1946-1949

Gaye A, Ndiaye T, Sy M, Deme AB, Thiaw AB, Sene A, Ndiaye C, Diedhiou Y, Mbaye AM, Ndiaye I, Tomkins-Tinch C, Gomis JF, Badiane AS, MacInnis B, Park DJ, Ndiaye M, Sy N, Sabeti PC, Siddle KJ, Ndiaye D. 2021. Genomic inves‑ tigation of a dengue virus outbreak in Thiès, Senegal, in 2018. Sci Rep 11(1), 10321.

Gonzales KK, Hansen IA. 2016. Artificial diets for mosquitoes. In. J. Environ. Res. Public. Health 13, 1267-1280.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12), 1647-1649. DOI: 10.1093/bioinformatics/bts199.

Kitano T, Umetsu K, Tian W, Osawa M. 2007. Two universal primer sets for species identification among vertebrates. Int J Legal Med 121(5), 423-427. DOI: 10.1007/s00414- 006-0113-y.

Letizia AG, Pratt CB, Wiley MR, Fox AT, Mosore M, Agbodzi B, Yeboah C, Kumordjie S, Di Paola N, Assana KC, Coulidiaty D, Ouedraogo C, Bonney JHK, Ampofo W, Tarnagda Z, Sangaré L. 2022. Ret‑ rospective genomic characterization of a 2017 dengue virus outbreak. Burkina Faso Emerg Infect Dis 28(6), 1198-210.

Logan JG, Stanczyk NM, Hassanali A, Kemei J, Santana AE, Ribeiro KA, Pickett JA, Mordue Luntz AJ. 2010. Arm-in-cage testing of natural human-derived mosquito repellents. Malar J 9, 239. [PubMed : 20727149]

McBride CS, Baier F, Omondi AB, Spitzer SA, Lutomiah J, Sang R, Ignell R, Vosshall LB. 2014. Evolution of mosquito preference for humans linked to an odorant receptor. Nature 515(7526), 222-227.

Menger DJ, Van Loon JJ, Takken W. 2014. Assessing the efficacy of candidate mosquito repellents against the background of an attractive source that mimics a human host. Med Vet Entomol 28(4), 407-413. DOI: 10.1111/mve.12061

Moi ML, Takasaki T, Kotaki A, Tajima S, Lim CK, Sakamoto M, Iwagoe H, Kobayashi K, Kurane I. 2010. Importation of dengue virus type 3 to Japan from Tanzania and Cote d’Ivoire. Emerg Infect Dis 16(11), 1770-1772. DOI: 10.3201/eid1 611.101061. PMID: 21029541; PMCID: PMC3294538.

O’Meara G. 2020. Variable expressions of autogeny in three mosquito species. Int. J. Inv. Rep 1(4), 253-261.

Ouédraogo S, Degroote S, Barro SA, Somé PA, Bonnet E, Ridde V. 2019. Recurrence of dengue epidemics in Burkina Faso: Community preference for an intervention to prevent the disease. Rev Epidemiol Sante Publique 67(6), 375-382.

Pautasso A, Desiato R, Bertolini S, Vitale N, Radaelli MC, Mancini M, Rizzo F, Mosca A, Calzolari M, Prearo M, Mandola ML, Maurella C, Mignone W, Chiavacci L, Casalone C. 2013. Mosquito Surveillance in Northwestern Italy to Monitor the Occurrence of Tropical Vector-Borne Diseases. Transbound Emerg Dis 60, 154-161. DOI: 10.1111/tbed.12123.

Raji JI, DeGennaro M. 2017. Genetic analysis of mosquito detection of humans. Curr. Opin.-Insect. Sci 20, 34-38.

Roitberg BD, Gordon I. 2005. Does the Anopheles blood meal_ fecundity Curveg Curve? J. Vector Ecol 30, 83-86.

Takken W, Verhulst NO. 2013. Host-preferences of blood feeding mosquitols. Ann. Rev. Entomol 58(1), 433-453.

Tchibozo C, Hounkanrin G, Yadouleton A, Bialonski A, Agboli E, Lühken R, Schmidt-Chanasit J, Jöst H. 2022. Surveillance of arthropod-borne viruses in Benin, West Africa 2020-2021: detection of dengue virus 3 in Aedes aegypti (Diptera: Culicidae). Military Med Res 9, 64. https://doi.org/10.1186/s40779-022-00425-9.