Welcome to International Network for Natural Sciences | INNSpub

Partial characterization of exopolysaccharides produced by Leuconostoc sp. Isolated from intestine of Animals

Research Paper | June 1, 2017

| Download 4

S. Larouci, A. Guermouche, F. Chaib, F. Bensalah

Key Words:

Int. J. Biosci.10( 6), 208-215, June 2017

DOI: http://dx.doi.org/10.12692/ijb/10.6.208-215


IJB 2017 [Generate Certificate]


Exopolysaccharides (EPS) produced by lactic acid bacteria (LAB) have gained increasing attention over the last few years because of their contribution to the rheology and texture of food products. For this purpose, a total of twelve LAB strains were isolated from intestinal content of coq and shrimp. Using a red ruthenium containing milk agar, four exopolysaccharides producing strains were selected and identified as Leuconostoc sp. on the basis of morphological characteristics and molecular identification using a genus specific primer which amplified an DNA fragment of 1200 pb. For EPS production and preparation, a selective sucrose media was used and show a highly viscous growth. Other work including the precipitation, hydrolysis of EPS and estimation of a total carbohydrate using a phenol sulfuric method were determined. The EPS production was varied from 654mg/l to 1254mg/l for the highest production for LGM 14 strain. Componential analysis of hydrolyzed EPS by thin layer chromatography indicated that it is a dextran, consisting of glucose monomer. The isolated strains of Leuconostoc sp. are a potent producer of dextran, which find its applications in various industries; it can be used as thickening or gelling agent in food.


Copyright © 2017
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Partial characterization of exopolysaccharides produced by Leuconostoc sp. Isolated from intestine of Animals

Bouzar FM, Cerning J, Desmazeaud M. 1995. Exopolysaccharide production in milk by Lactobacillus delbruckii ssp. bulgaricus CNRZ 1187 and by two colonial variants. Journal of Dairy Science 79, 205-211. https://doi.org/10.3168/jds.S0022-0302(96)76352-X.

Cerning J, Bouillanne C, Landon M, Desmazeaud MJ. 1992. Isolation and characterization of exopolysaccharides from slime-forming mesophilic lactic acid bacteria. Journal of Dairy Sciences 75, 692- 699. www.doi.org/ 10.3168/jds.S0022-0302(92)77805-9.

De Man J, Rogosa M, Sharpe ME. 1960. Journal of Applied Bacteriology 23, 130-135. DOI: 10.1111/ j.1365-2672.1960.tb00188.x.

Dertli E, Mercan E, Arıcı M, Yılmaz MT, Sağdıç O. 2016. Characterization of lactic acid bacteria from Turkish sourdough and determination of their exopolysaccharide (EPS) production characteristics. LWT-Food Science and Technology 71, 116-124. www.doi.org/10.1016/j.lwt.2016.03.030.

Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956.Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28, 350–356. DOI: 10.1021/ac60111a017.

Evans LR, Linker M. 1973. Production and characterization of the slime polysaccharides of Pseudomonas aeruginosa. Journal of Bacteriology 116, 915-924.

Galle S, Schwab, Arendt E, Ganzle M. 2010. Exopolysaccharide-forming Weissella strains as starter cultures for sorghum and wheat sourdoughs. Journal of agricultural and food chemistry 58(9), 5834-5841. DOI: 10.1021/jf1002683.

Gevers D, Huys G, Swings J. 2001. Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiology Letters 205, 31-36. DOI: 10.1111/j.1574-6968.2001.tb10921.x.

Giraffa G. 2004. Studying the dynamics of microbial populations during food fermentation. FEMS Microbiology Reviews 28, 251-260. DOI: 10.1016/j. femsre.2003.10.005.

Gordana R. Dimić. 2006. Characteristics of the Leuconostocmes enteroides subsp. Mesenteroides strains from fresh vegetables, APTEFF 37, 1-192.

Graber M, Morin A, Duchiron F, Monsan PF. 1988. Microbial polysaccharides containing 6-deoxysugars. Enzyme and Microbial Technology 10(4), 198-206. www.doi.org/10.1016/0141-0229 (88)90067-1.

Joshi SR, Koijam K. 2014. Exopolysaccharide Production by a Lactic Acid Bacteria, Leuconostoc lactis Isolated from Ethnically Fermented Beverage. National Academy Science Letters 37(1), 59-64. DOI: 10.1007/s40009-013-0203-6.

Kim D, Robyt JF, Lee SY, Lee JH, Kim YM. 2003. Dextran molecular size and degree of branching as function of sucrose concentration pH and temperature of reaction of Leuconostoc mesenteroides B-512 FMCM. Carbohydrate Research 338, 1183-1189. www.doi.org/ 10.1016/S0008-6215(03)00148-4.

Leemhuis H, Dijkman WP, Dobruchowska JM, Pijning T, Grijpstra P, Kralj S. 2013a. 4,6-α-Glucantransferase activity occurs more widespread in Lactobacillus strains and constitutes a separate GH70 subfamily. Applied Microbiology and Biotechnology 97, 181-193. DOI: 10.1007/s00253-012-3943-1.

Majumder A, Singh A, Goyal A. 2009. Application of response surface methodology for glucan production from Leuconostocd extranicum and its structural characterization. Carbohydrate Polymers 75, 150-156. DOI: 10.1016/j.carbpol.2008.07.014.

Monsan P, Bozonnet S, Albenne C, Joucla G, Willemot RM, Remaud-Siméon M. 2001. Homopolysaccharides from lactic acid bacteria. International Dairy Journal 11, 675-685. https://doi. org/10.1016/S0958-6946(01)00113-3.

Naessens M, Cerdobbel A, Soetaert W, Vandamme EJ. 2005. Review Leuconostoc dextransucrase and dextran: production properties and applications. Journal of Chemical Technology and Biotechnology 80, 845-860. DOI: 10.1002/jctb.1322.

Onilude AA, Olaoye O, Fadahunsi IF, Owoseni A, Garuba EO, Atoyebi T. 2013. Effects of cultural conditions on dextran production by Leuconostoc spp. International Food Research Journal 20(4), 1645-1651.

Park JH, Ahn HJ, Kim SG, Chung CH. 2013. Dextran-like exopolysaccharide-producing Leuconostoc and Weissella from kimchi and its ingredients. Food Science and Biotechnology 22, 1047-1053. DOI: 10. 1007/s10068-013-0182-x.

Paulo EM, Boffo EF, Branco A, Valente ÂM, Melo IS, Ferreira AG, Assis SAD. 2012b. Production, extraction and characterization of exopolysaccharides produced by the native Leuconostoc pseudome senteroides R2 strain. Anais da Academia Brasileira de Ciências 84(2), 495-508.

Polak-Berecka M, Waśko A, Paduch R, Skrzypek T, Sroka-Bartnicka A. 2014. The effect of cell surface components on adhesion ability of Lactobacillus rhamnosus. Antonie Van Leeuwenhoek 106(4), 751-762. DOI: 10.1007/s10482-014-0245-x.

Purama RK, Goswami P, Khan AT, Goyal A. 2009. Structural analysis and properties of dextran produced by Leuconostocm esenteroides NRRL B-640. Carbohydrate Polymers 76, 30-35. https://doi.org/10.1016/j.carbpol.2008.09.018.

Rao TJM, Kothari D, Shukla R, Goyal A. 2014. Structural and biocompatibility properties of dextran from Weissella cibaria JAG8 as food additive. International Journal of Food Sciences and Nutrition 15, 1-6. http://dx.doi.org/10.3109/09637486.2014.917147.

Rühmann B, Schmid J, Sieber V. 2015. Methods to identify the unexplored diversity of microbial exopolysaccharides. Frontiers in microbiology 6, 565. DOI: 10.3389/fmicb.2015.00565.

Sanhueza E, Paredes-Osses E, González CL, García A. 2015. Effect of pH in the survival of Lactobacillus salivarius strain UCO-979C wild type and the pH acid acclimated variant. Electronic Journal of Biotechnology 18(5), 343-346. http://dx.doi.org/10.1016/j.ejbt.2015.06.005.

Santos M, Teixeira J, Rodrigues A. 2000. Production of dextransucrase, dextran and fructose from sucrose using Leuconos tocmesenteroides NRRL-B512 (f). Biochemical Engineering Journal 4, 177-188. https://doi.org/10.1016/S1369-703X(99)00047-9.

Schillinger U, Boehringer B, Wallbaum S, Caroline LA, Gonfa 2, Huch M, Holzapfel WH, Franz Charles MAP. 2008. A genus-specific PCR method for differentiation between Leuconostoc and Weissella and its application in identification of heterofermentative lactic acid bacteria from coffee fermentation, FEMS Microbiology Letters 286, 222-226. DOI: 10.1111/j.1574-6968.2008.01286.x.

Souly F. 1978. Separation and analysis of some sugars by using thin layer chromatography, journal of the A.S.S.B.T 20(3).

Stingele F, Neeser JR, Mollet B. 1996. Identification and characterization of the eps (exopolysaccharide) gene cluster from Streptococcus thermophiles Sfi6. Journal of Bacteriology 178, 1680-1690. DOI: 10.1128/jb.178.6.1680-1690.1996.

Tieking M, Ehrmann MA, Vogel RF, Gänzle MG. 2005a. Molecular and functional characterizations of a levansucrase from the sourdough isolate Lactobacillus sanfranciscensis TMW1.392. Applied Microbiology and Biotechnology 66, 655-663. DOI: 10.1007/s00253-004-1773-5.

Torres-Rodríguez I, Rodríguez-Alegría ME, Miranda-Molina A, Giles-Gómez M, Morales RC, López-Munguía A, Escalante A. 2014. Screening and characterization of extracellular polysaccharides produced by Leuconostoc kimchii isolated from traditional fermented pulque beverage. Springer Plus 3(1), 583. DOI: 10.1186/2193-1801-3-583.

Tsuchiya HM, Koepsell HJ, Corman J, Bryant G, Bogard MO, Feger VH, Jackson RW. 1952. The effect of certain cultural factors on production of dextransucrase by Leuconostoc mesenteries. Journal of Bacteriology 64, 521-526.

Welman AD, Maddox IS. 2003. Exopolysaccharides from lactic acid bacteria: Perspectives and challenges. Trends in Biotechnology 21, 269-274. https://doi.org/10.1016/S0167-7799(03)00107-0.

Yang Y, Peng Q, Guo Y, Han Y, Xiao H, Zhou Z. 2015. Isolation and characterization of dextran produced by Leuconostoc citreum NM105 from manchurian sauerkraut. Carbohydrate polymers 133, 365-372. https://doi.org/10.1016/j.carbpol.2015.07.061.