Potential inoculant strains of Brazilian endophytic bacteria for maize (Zea mays L.) growth promotion

Paper Details

Research Paper 01/10/2015
Views (340) Download (13)
current_issue_feature_image
publication_file

Potential inoculant strains of Brazilian endophytic bacteria for maize (Zea mays L.) growth promotion

Vivian J. Szilagyi-Zecchin, Ana C. Klosowski, Angela C. Ikeda, Mariangela Hungria, Lygia V. Galli-Terasawa, Vanessa Kava-Cordeiro, Chirlei Glienke, Átila F. Mógor
Int. J. Agron. Agri. Res.7( 4), 128-134, October 2015.
Certificate: IJAAR 2015 [Generate Certificate]

Abstract

The maize (Zea mays L.) is one of the most important cereals as a source of energy for human nutrition and animal feed. And the cultivation of maize to be improved with the use of lower-impact resources for the environment and more profitable for farmers. Therefore the use of endophytic bacteria promoting plant growth comes against these ideals. Seven bacteria isolated from maize roots were identified and verified for their ability to promote plant growth under greenhouse conditions. In addition, mechanisms of plant growth promotion were investigated in vitro. Sequencing analysis of the 16S rRNA gene revealed five bacterial genera: Achromobacter, Enterobacter, Pseudomonas, Stenotrophomonas and Bacillus. Among the isolates, Bacillus sp. (LGMB227) promoted root length (65.1%), stimulated the aerial part development (39.4%) and Pseudomonas sp. (LGMB205) increased the root volume (22.7%). Here we demonstrate that in vivo data were corroborated by in vitro data, where the largest producer of IAA (63.1 mg/mL) was detected in Bacillus sp. LGMB227 that showed as well siderophore and pectinase activity. Pseudomonas sp. had the second largest production of IAA (56.1 mg/mL) and was also siderophore positive. Identified that strain LGMB227 of Bacillus sp. showed the best performance, with potential use as inoculants for plant growth promotion.

VIEWS 8

Ahmad F, Ahmad I, Khan MS. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiology Research 163, 173-181.

Araújo FF, Guerreiro RT. 2010. Bioprospecção de isolados de Bacillus promotores de crescimento de milho cultivado em solo autoclavado e natural. Ciência Agrotecnica 34, 837-844.

Araújo FF, Henning AA, Hungria M. 2005. Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World Journal of Microbiology Biotechnology 21, 1639-1645.

Azevedo JL. 1998. Microorganismos endofíticos. In: Ecologia Microbiana; Melo IS, Azevedo JL, Eds. Embrapa Meio Ambiente, Jaguariuna, BR: Embrapa 117-137.

Barretti PB, Souza RM, Pozza EA. 2008. Bactérias endofíticas como agentes promotores do crescimento de plantas de tomateiro e de inibição in vitro de Ralstonia solanacearum. Ciência Agrotecnica 32, 731-739.

CONAB (Companhia Nacional De Abastecimento). 2015. Acompanhamento de safra brasileira: grãos, quinto levantamento, fevereiro 2015. Brasília 2, 72-85.

Ewing B. 1998. Base calling of automated sequencer traces using phred I Accuracy assessment. Genome Research 8, 175-185.

FAO (Food and Agriculture Organization of the United Nations). 2009. Base de dados Faostat– Agriculture, Roma, 2011. Available in http://faostat.fao.org. [20 May 2011].

Glienke-Blanco C, Aguilar-Vildoso CI, Vieira MLC, Barroso PAV, Azevedo JL. 2002. Genetic variability in the endophytic fungus Guignardia citricarpa isolated from citrus plants. Geneticand Molecular Biology 25, 251-255.

Gondim FA, Gomes-Filho E, Lacerda CF, Prisco JT, Azevedo Neto AD, Marques EC. 2010. Pretreatment with H2O2 in maize seeds: effects on germination and seedling acclimation to salt stress. Brazilian Journal of Plant Physiology 22, 103-112.

Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW. 1997. Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology 43, 895-914.

Hankin L, Anagnostakis SL. 1975. The use of solid media for detection of enzyme production by fungi. Mycologia 67, 597-607.

Hernández-Rodríguez A, Heydrich-Pérez M, Acebo-Guerrero Y, Velazquez-Del Valle MG, Hernandez-Lauzardo NA. 2008. Antagonistic activity of Cuban native rhizobacteria against Fusarium verticillioides (Sacc.) Nirenb. in maize (Zea mays L.). Applied Soil Ecology 39(2), 180-186.

Ikeda AC, Bassani LL, Adamoski D, Stringari D, Kava-Cordeiro V, Glienke C, Steffens MBR, Hungria M, Galli-Terasawa LV. 2013. Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes. Microbial Ecology 65, 154-160.

Johnston-Monje D, Mousa WK, Lazarovits G, Raizada MN. 2014. Impact of swapping soils on the endophytic bacterial communities of pre-domesticated, ancient and modern maize. BMC Plant Biology 14, 233.

Kovtunovych G, Lar O, Kamalova S, Kordyum V, Kleiner D, Kozyrovska N. 1999. Correlation between pectate lyase activity and ability of diazotrophic Klebsiella oxytoca VN 13 to penetrate into plant tissues. Plant and Soil 215, 1-6.

Kuss AV, Kuss VV, Lovato T, Flôres ML. 2007. Fixação de nitrogênio e produção de ácido indolacético in vitro por bactérias diazotróficas endofíticas. Pesquisa Agropecuária Brasileira 42, 1459-1465.

Mógor ÁF, Barbizan T, Pauletti V, Oliveira J, Bettoni MM. 2013. Teores de clorofila em cultivares de tomateiro submetidas a aplicações foliares de magnésio. Pesquisa Agropecuária Tropical 43, 363-369.

Montañez A, Blanco AR, Barlocco C, Beracochea M, Sicardi M. 2012. Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Applied Soil Ecology 58, 21-28.

Pereira P, Ibáñez F, Rosenblueth M, Etcheverry M, Martínez-Romero E. 2011. Analysis of the bacterial diversity associated with the roots of maize (Zea mays L.) through culture-dependent and culture-independent methods. I.S.R.N. Ecology. doi:10.5402/2011/938546.

Radwan TSD, Mohamed ZK, Reis VM. 2004. Efeito da inoculação de Azospirillum e Herbaspirillum na produção de compostos indólicos em plântulas de milho e arroz. Pesquisa Agropecuária Brasileira 39, 987-994.

Roca A. 2013. Analysis of the plant growth-promoting properties encoded by the genome of the rhizobacterium Pseudomonas putida BIRD-1. Environmental Microbiology 15, 780-794.

Rodrigues Neto J, Malavolta Jr VA, Victor O. 1986. Meio simples para isolamento e cultivo de Xanthomonas campestris pv. citri tipo B. Summa Phytopathol 12, 16.

Schwyn B, Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry 160, 47-56.

Sharma VK, Nowak J. 1998. Enhancement of Verticillium wilt resistance in tomato transplants by in vitro co-culture of seedlings with a plant growth promoting rhizobacterium (Pseudomonas sp. strain PsJN). Canadian Journal of Microbiology 44, 528-536.

Silva DAF, Cotta SR, Vollú RE, de Jurelevicius DA, Marques JM, Marriel IE, Seldin L. 2014. Endophytic microbial community in two transgenic maize genotypes and in their near-isogenic non-transgenic maize genotype. BMC Microbiology 14, 332.

Silva FAS, Azevedo CAV. 2002. Versão do programa computacional Assistat para o sistema operacional Windows. Revista Brasileira de Produtos Agroindustriais 4, 71-78.

Szilagyi-Zecchin VJ, Ikeda AC, Hungria M, Adamoski D, Kava-Cordeiro V, Glienke C, Galli-Terasawa LV. 2014. Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture. AMB Express. doi:10.1186/s13568-014-0026-y.

Szilagyi-Zecchin VJ, Mogor AF, Ruaro L, Röder C. 2015. Crescimento de mudas de tomateiro (Solanum lycopersicum) estimulado pela bactéria Bacillus amyloliquefaciens subsp. Plantarum FZB42 em sistema de cultivo orgânico. Revista de Ciências Agrárias 38, 26-33.

Taiz L, Zeiger E. 2004. Fisiologia vegetal. Artmed, Porto Alegre, Brasil. 719 pp.

Vardharajula S, Zulfikar Ali S, Grover M, Reddy G, Bandi V. 2011. Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. Journal of Plant Interactions 6, 1-14.