Welcome to International Network for Natural Sciences | INNSpub

Potentialisation of the biocontrol efficacy of arbuscular mycorrhizas fungi against cocoa black pod rot causing Phytophthora megakarya with natural flavonoid

Research Paper | July 1, 2016

| Download 4

Louise Wakam Nana, Virginie Thérèse Ekounda, Pierre Mkounga, Pierre Eke, Augustin Ephraïm Nkengfack, Dieudonné Nwaga

Key Words:

Int. J. Agron. Agri. Res.9( 1), 165-181, July 2016


IJAAR 2016 [Generate Certificate]


Cocoa (Theobroma cacao L.) black pod rot, caused by oomycetes Chromista Phytophthora megakarya is the major constraint to cocoa production in Cameroon, causing substantial yield losses (up to 100%). As mean to alter the yield shortage, priority is given to chemical fungicides, though Arbuscular Mycorrhizals Fungi (AMF) have been pointed out to offer a friendly alternative. Moreover, exudation of flavonoids in the mycorrhizosphere could modulate the symbiotic efficiency of these symbionts. Thus, the single and associative effects of two AMF strains (Gigaspora margarita and Glomus intraradices) and a natural flavonoid (3,5,7,3’,4’,5’-hexahydroxy flavanone) were evaluated for their ability to induce tolerance in two cocoa (T. cacao) clones (SNK 10 and ICS 84) against P. megakarya under greenhouse conditions. Also, as biochemical resistance marquers, qualitative (TLC) and quantitative changes in total phenol and flavonoid were assessed Twenty Weeks After Sowing (WAS). The results indicated that, by adding the flavonoid, the AMF significantly improved the growth, total phenol and flavonoid contents as well as the susceptibility of both clones towards P. megakarya. The TLC revealed an enhanced biosynthesis of flavones and anthocyanidins in fresh leaves from the ICS 84 clone which was found to be the least sensitive to P. megakarya. Our results reveal that the dual application of AMF and flavonoid significantly suppresses the black pod disease on cocoa (T. cacao) seedlings, thereby supporting their used to improve the tolerance of cocoa plant against P. megakarya.


Copyright © 2016
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Potentialisation of the biocontrol efficacy of arbuscular mycorrhizas fungi against cocoa black pod rot causing Phytophthora megakarya with natural flavonoid

Agrios GN. 1997. Control of plant diseases. Plant pathology. 4th edition. California: Academic Press.

Akiyama K, Matsuoka H, Hayashi H. 2002. Isolation and identification of a phosphate deficiency-induced C-glycosylflavonoid that stimulates arbuscular mycorrhiza formation in melon roots. Molecular Plant Microbe Interaction 15, 334-340.

Akthar MS, Siddiqui ZA. 2008. Arbuscular Mycorrhizal Fungi as Potential Bioprotectants against Plant Pathogens. In: Mycorrhizae: Sustainable Agricul-ture and Forestry, Siddiqui, Z. A., MS. Akhtar and K. Futai (Eds.). Springer Netherlands, Dordrecht, The N etherla.

AL-Askar AA, Rashad YM. 2010. Arbuscular mycorrhizal fungi: a biocontrol agent against common bean Fusarium root rot disease. Plant Pathology Journal 9(1), 31-38.

AL-Ghamdi AAM, Jais HM. 2013. Interaction between soil textural components, flavonoids in the roots and mycorrhizal colonization in Juniperus procera in Saudi Arabia. African Journal Microbiology Research 7(12), 996-1001.

Anith KN, Radhakrishnan NV, Manomohandas TP. 2003. Screening of antagonistic bacteria for biological control of nursery wilt of black pepper (Piper nigrum). Microbiology Research 158, 91-97.

Bago B, Pfeffer PE, Shachar-Hill Y. 2000. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiology 124, 949-958.

Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual of Review Plant Biology 57, 233-266.

Bandyukova VA, Shinkareako AL. 1973. The thin layer chromatography of flavonoids. Chemistry of Natural Compounds 9(1), 17-21.

Barz W, Hoesel W .1975. Metabolism of flavonoids. In: Harborne J. B., Mabry T. J., Mabry H. (eds) The flavonoids. Chapman and Hall, London 916-969.

Bastide P, Massonie G, Macheix JJ .1988. Influence in vitro des composés phénoliques des jeunes feuilles du pêcher, Prunus persica (L.) Batsch, sur le puceron vert du pêcher, Myzus persicae Sulzer. Agronomie 8, 787-792.

Bécard G, Douds DD, Pfeffer PE. 1992. Extensive in vitro hyphal growth of vesicular arbuscular mycorrhizal fungi in the presence of CO2 and flavonols. Applied of Environment Microbiology 58, 821-825.

Blaha G, Lotode R. 1976. Un critère primordial de la sélection du cacaoyer au Cameroun : la résistance à la pourriture brune des cabosses (P. palmivora).Café Cacao Thé 20, 97-115.

Bollag JM, Dec J, Huang PM. 1997. Formation mechanisms of complex organic structures in soil habitats. Advance Agronomy 63, 237-266.

Breuillin F, Schramm J, Hajirezae M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E, Kuhlemeier C, Martinoia E, Franken P, Scholz U, Reinhardt D. 2010. Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant Journal 64, 1002-1017.

Cesco S, Mimmo T, Tonon G, Tomasi N, Pinton R, Terzano R, Neumann G, Weisskopf L, Renella G, Landi L, Nannipieri P. 2012. Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. Biology Fertility Soils, Review 48, 123-149.

Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L. 2010. Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant and Soil 329, 1-25.

Deberdt P, Mfegue CV, Tondje PR, Bon MC, Ducamp M, Hurard C, Begoude BAD, Ndoumbe-Nkeng M, Hebbar PK, Cilas C. 2007. Impact of environmental factors, chemical fungicide and biological control on cacao pod production dynamics and black pod disease (Phytophthora megakarya) in Cameroon. Biological Control 44, 149-159.

Dec J, Haider K, Bollag J-M. 2001. Decarboxylation and demethoxylation of naturally occurring phenols during coupling reactions and polymerization. Soil Sciences 166, 660-671.

Djocgoue PF, Boudjeko T, Mbouobda HD, Nankeu DJ, El Hadrami I, Omokolo ND. 2007. Heritability of phenols in the resistance of Theobroma cacao against Phytophthora megakarya, the causal agent of black pod disease. Journal of Phytopathology 155, 519-525.

Efombagn MIB, Bieysse D, Nyassé S, Eskes AB. 2011. Selection for resistance to Phytophthora pod rot of cocoa (Theobroma cacao L.) in Cameroon: repeatability and reliability of screening tests and field observations. Crop Protection Journal 30, 105-110.

Efombagn MIB, Nyassé S, Bieysse D, Sounigo O. 2013. Analysis of the resistance to Phytophthora pod rot within local selections of cacao (Theobroma cacao L.) for breeding purpose in Cameroon. Journal of Plant Breed Crop Sciences 5(6), 111-119.

El-Fiki AII, Mohamed FG, El-Deeb AA, Khalifa MMA. 2004. Some applicable methods for controlling sesame charcoal rot disease (Macrophomina phas-eolina) under greenhouse conditions. Egyptian Journal of Phytopathology 32(2), 87-101.

Elsen A, Gervacio D, Swennen R, De Waele D. 2008. AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect. Mycorrhiza 18, 251-256.

Evans HC, Prior C. 1987. Cocoa pod diseases: ausal agents and control. Outlook on Agriculture 16, 35-41.

Fokom R, Nana WL, Tchameni S, Nwaga D. 2010. Arbuscular Mycorrhizal Fungi (AMF) colonis-ation and rhizobia nodulation of cowpeaas affected by flavonoid application. Research Journal of Agricul-ture and Biological Sciences 6(6), 1015-1021.

Harborne JB. 1998. Phytochemical Methods, A guide to modern techniques of plant analysis. Springer Pvt. Ltd., New Delhi India.

Harley JL. 1989. The significance of mycorrhizae. Mycological Research 92, 129-139.

Harrier LA, Watson CA. 2004. The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Management Sciences 60, 149-157.

Harrison MJ, Dixon RA. 1993. Isoflavonoid accumulation and expression of defense gene trans-cripts during the establishment of vesicular arbus-cular mycorrhizal associations in roots of Medicago truncatula. Molecular Plant-Microbe Interaction 6, 643-654.

Harrison MJ. 1998. Development of the arbuscular mycorrhizal symbiosis. Currence Opin. Plant Biology 1, 360-365.

Hassan S, Ulrike M. 2012. The role of flavonoids in root-rhizosphere signalling: opportunities and challe-nges for improving plant–microbe interactions. Jour-nal of Experience Botany 1-16.

Jaafar HZ E, Por LS, Ibrahim MH. 2010. Effects of CO2 enrichment on accumulation of total phenols, flavonoid and chlorophyll content in two varieties of Labisia pumila Benth. Exposed to different shade levels. In: Proceedings of international conference on balanced nutrient management for tropical agricul-ture, Kuantan, Pahang, Malaysia 6, 112-114.

Jones JDG, Dangl JL. 2006. The plant immune system. Natural 444, 323-329.

Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ. 2012. Mycorrhiza-induced resistance and priming of plant defenses. Journal of Chemistry and Ecology Review 38, 651-664.

Kikuchi K, Matsushita N, Suzuki K, Hogetsu T. 2007. Flavonoids induce germination of basidios-pores of the ectomycorrhizal fungus Suillus bovinus. Mycorrhiza 17, 563-570.

Kormanik PP, Mc Graw AC. 1982. Quantification of vesicular mycorhizea in plant roots. In: Methods and principles of mycorrhizal research. Schenek NC (Fd) Am Phythology Minnes, 37-45.

Küçükyumuk Z, Özgönen H, Erdal I, Eraslan F. 2014. Effect of zinc and Glomus intraradices on control of Pythium deliense, plant growth parameters and nutrient concentrations of cucumber. Notulae Botanicae Horti Agrobotanici 42(1), 138-142.

Larose G, Chenevert R, Moutoglis P, Gagne S, Piche Y, Vierheilig H. 2002. Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. Journal of Plant Physiology 159, 1329-1339.

Lu FC, Lee CY, Wang CL. 2015. The influence of arbuscular mycorrhizal fungi inoculation on yam (Dioscorea spp.) tuber weights and secondary metab-olite content. Peer Journal, DOI 10.7717/peerj.1266.

Macheix JJ.1974. Les esthers hydroxycinnamiques de la pomme. Identification, variation au cours de la croissance du fruit et du métabolisme. PhD Thesis, Université de Paris VI, Paris, France Pp. 168.

Machineski O, Balota EL, Filho AC, Andrade DS, Souza JRP. 2009. Crescimento de mudas de peroba rosa em resposta à inoculação com fungos micorrízicos arbusculares. Ciencis Rural 39, 567-570.

Maherali H, Klironomos JN. 2007. Influence of phylogeny on fungal community assembly and ecosystem functioning. Sciences 316, 1746-1748.

Markham KR. 1982. Technics of flavonoids ident-ification. Ed Academic Press, London 1-113.

Mierziak J, Wojtasik W, Kostyn K, Czuj T, Szopa J, Kulma A. 2014. Crossbreeding of trans-genic flax plants overproducing flavonoids and gycosyl-transferase results in progeny whith impr-oved antifungal and antioxidative properties. Molec-ular Breeding 34, 1917-1932.

Morandi D. 1996. Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interaction, and their potential role in biological control. Plant Soil 185, 241-251.

Nana WL, Debost R, Ponchet M. 1995. Recherche des marqueurs flavaniques (phénols) impliqués dans la résistance du cacaoyer, Theobroma cacao L. à Phytophthora megakarya. Journal of Biology and Biochemistry Sciences 5, 61-80.

Nana WL, Eke P, Fokom R, Bakanrga-Via I, Tchana T, Tchameni NS, Kuate J, Menut C, Fekam BF. 2015. Antimicrobial Activity of Syzygium aromaticum and Zanthoxylum xanthoxyloides essential oils against Phytophthora megakarya. Journal of Phytopathology, Doi: 10.1111/jph.12363.

Nana WL, Nwaga D, Fokom R, Oneya S, Ngakou A. 2002. Variation des composés phénoliques chez Vigna unguiculata (L.) Walp. (Légumineuse) et influ-ence des rhizobia et des mycorhizes sur leur biosynthèse. African Journal of Science Technology  3, 127-135.

Nana WL, Tchameni NS, Fokom R, Debost M. 2011. Flavonoïd compounds synthesis by cocoa fruits (Theobroma cacao L.) in response to Phytophthora megakarya infection. Research Journal of Agricul-ture and Biological Sciences 7(3), 335-342.

Ndoumbe-Nkeng M, Cilas C, Nyemb E, Nyasse S, Bieysse D, Flori A, Sache I. 2004. Impact of removing diseased pods on cocoa black pod caused by Phytophthora megakarya and on cocoa production in Cameroon. Crop Protection 23, 415-424.

Ndoumbe-Nkeng M, Sache I. 2003. Lutte contre la pourriture brune des cabosses du cacaoyer au Cam-eroun, Phytoma. La défense des végétaux 562, 10-12.

Ngonkeu MEL. 2009. Tolérance de certaines varié-tés de maïs aux sols à toxicité aluminique et mangani-que du Cameroun et diversités moléculaire et fonctio-nnelle des mycorhizes à arbuscules. Thèse, Université de Yaoundé I, Cameroun 224p.

Ngwene B, George E, Claussen W Neumann E. 2010. Phosphorus uptake by cowpea plants from sparingly available or soluble sources as affected by nitrogen form and arbuscular- mycorrhiza- fungal inoculation. Journal of Plant Nutrition and Soil Sciences 173, 353-359.

Nwaga D, Fankem H, Essono Obougou G, Ngo Nkot L, Randrianangaly JS. 2007. Pseudomo-nads and symbiotic micro-organisms as biocontrol agents against fungal disease caused by Pythium aphanidermatum. African Journal of Biotechnology 6(3), 190-197.

Nwaga D, Jansa J, Abossolo AM, Frossard E. 2010. The potential of soil beneficial microorganisms for slash-and-burn agriculture in the humid forest zone of Sub-saharan Africa. In: Soil Biology and Agriculture in the Tropics. Soil Biology Springer-Verlag 85-107.

Nwaga D. 1984. Contribution à l’amélioration génétique de la résistance au cacaoyer (Theaobroma cacao L.) à la pourriture brune des cabosses due à Phytophthora sp.: mise au point d’un test précoce d’évaluation de la résistance. Diplôme d’Etudes Approfondies. Université de Rennes 1, 25.

Nyadanu D, Akromah R, Adomako C, Kwosh ST, Lowor H, Dzahini-Obiatey AY, Akrofi F, Owusu A, Opoku YA, Assuah MK. 2013. Phytochemical mechanisms of resistance to black pod disease in cocoa (Theobroma cacao L.). American Journal of Biochem-istry and Molecular Biology 3(1), 20-37.

Nyassé S, Cilas C, Herail C, Blaha G. 1995. Leaf inoculation as an early screening test for cocoa (Theobroma cacao L.) resistance to Phytophthora black pod disease. Crop Protection 14(8), 657-663.

Nyassé S.1997. Etude de la diversité de Phytophthora megakarya et caractérisation de la résistance du cacaoyer (Theobroma cacao L.) à cet agent pathogène. Thèse PhD, Institut National Polytechnique, Toulouse, France.

Omokolo ND, Nankeu DJ, Niemenak N, Djocgoue PF. 2002. Analysis of amino acids and carbohydrates in the cortex of nine clones of Theobroma cacao L. in relation to their susceptibility to Phytophthora megakarya Bra. and Grif. Crop Protection 21, 395-402.

Opoku IY, Akrofi AY, Appiah AA. 2007. Assessment of sanitation and fungicide application directed at cocoa tree trunks for the control of Phytophthora black pod infections in pods growing in the canopy. European Journal of Plant Pathology 117, 167-175.

Paulin D, Ducamp M, Lachenaud P. 2008. New sources of resistance to Phytophthora megakarya identified in wild cocoa tree populations of French Guiana. Crop Protection 27, 1143-1147.

Ponce M, Scervino JM, Erra-Balsells R, Ocampo JA, Godeas A. 2004. Flavonoids from shoots and roots of Trifolium repens (white clover) grown with and without the arbuscular mycorrhizal fungus Glomus intraradices. Phytochemistry 65: 1925-1930.

Satnami DK, Yadava RN 2011. Potential phytoch-emical from Caesalpinia crista Linn. Research Jour-nal of Phytochemistry 10, 1819-1829.

Scervino JM, Ponce MA, Erra-Bassells R, Bompadre MJ, Vierheilig H, Ocampo JA, Godeas A. 2006. Glycosidation of apigenin results in alloss of its activity on different growth parameters of arbuscular mycorrhizal fungi from the genus Glomus and Gigaspora. Soil Biology and Biochemistry 38, 2919-2922.

Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A. 2005b. Flavonoids exclusively present in mycorrhizal roots of white clover exhibit a different effect on arbuscular mycorrhizal fungi than flavonoids exclusively present in non-mycorrhizal roots of white clover. Journal of Plant Interaction 1(1), 15-22.

Scervino JM, Ponce MA, Erra-Brassels R, Vierheilig H, Ocampo JA, Godeas A. 2005a. Arbuscular mycorrhizal colonisation of tomato by Gigaspora and Glomus species in the presence of root flavonoids. Journal of Plant Physiology 162, 625-633.

Scervino JM, Ponce MA, Monica ID, Vierheilig H, Ocampo JA, Godeas A. 2009. Development of arbuscular mycorrhizal fungi in the presence of different patterns of Trifolium repens shoot flavonoids. Journal of Sciences and Plant Nutrition 9, 102-115.

Singh M. 2015. Interactions among arbuscular mycorrhizal fungi, Trichoderma harzianum, Aspergillus niger and biocontrol of wilt of tomato. Archives of Phytopathology and Plant Protection 48(3), 205-211.

Smith SE, Read DJ. 1997. Mycorrhizal Symbiosis, second ed. Academic Press. Sramek F, Dubsky M, Vosartka M. 2000. Effect of arbuscular mycorrhizal fungi and Trichoderma harzianum on three species of balcony plants. Rostl. Vyr 46, 127-131.

Smith SE, Read DJ. 2008. Mycorrhizal Symbiosis, 3rd ed. San. Diego, CA: Academic Press, London 787 p.

Tchameni NS, Nwaga D, Nana WL, Ngonkeu EL, Fokom R, Kuate J, Etoa FX. 2012. Growth enhancement, amino acid synthesis and reduction in susceptibility towards Phytophthora megakarya by arbuscular mycorrhizal fungi inoculation cocoa plants. Journal of Phytopathology 160, 220-228.

Tchameni NS, Omoloko C, Nana WL, Tchana NA, Nkengfack A, Nwaga D. 2008 Effets des champignons mycorhiziens et des flavonoïdes sur les phosphatases, la croissance et la valeur nutritionnelle du haricot vert. African Journal of Sciences and Technology 9(1), 20-28.

Tchameni SN, Ngonkeu MEL, Begoude BAD, Nana WL, Fokom R, Mbarga JB, Tchana T, Tondje PR, Etoa FX, Kuaté J. 2011. Effect of Trichoderma asperellum and arbuscular mycorrhizal fungi on cacao growth and resistance against black pod disease. Crop Protection 30, 1321-1327.

Toua D, Benchabane M, Bensaid F, Bakour R. 2013. Evaluation of Pseudomonas fluorescens for the biocontrol of Fusarium wilt in tomato and flax. African Journal of Microbiology Research 7(48), 5449-5458.

Toxopeus H. 1985. Planting material. In: Cocoa (4 th ed), G.A.R., Wood and R.A. Lass Wood, G.A.R. and Lass (eds). Londres, Royaume-Uni, Longman 80-92.

Trouvelot A, Kough JL, Gianinazzi-Pearson V. 1986. Mesure du taux de mycorhization VA d’un système radiculaire. Recherches et méthodes d’estimation ayant une signification fonctionnelle. In: Aspects physiologiques et génétiques des mycorhizes, Dijon, INRA 217-221.

Tsai SM, Phillips DA. 1991. Flavonoids released naturally from alfalfa promote development of the symbiotic Glomus spores in vitro. Applied of Envir-onment and Microbiology 57, 1485-1488.

Venkateswarlu B, Pirat M, Kishore N, Rasul A. 2008. Mycorrhizal inoculation in neem (Azadirachta indica) enhances azadirachtin content in seed kernals. World Journal of Microbiology and Biotechnology       24, 1243-1247.

Vierheilig H, Bago B, Albrecht C, Poulin MJ, Piche Y. 1998. Flavonoids and arbuscular mycor-rhizal fungi. Flavonoids in the Living System 439, 9-33.

Vierheilig H, Piché Y. 2002. Signalling in arbuscular mycorrhiza: Facts and hypotheses. In: Buslig B, Manthey J. (eds) flavonoids in cell functions. Kluwer Academic/Plenum Publishers, New York 23-39.

Volpin H, Elkind Y, Okon Y, Kapulnik Y. 1995. A vesicular arbuscular mycorrhizal fungus (Glomus intraradix) induces a defense response in Alfalfa roots. Plant Physiology 104, 683-689.

Wacker DP, Steege MW, Northup J, Sasso G, Berg W, Reimers T, Cooper L, Cigrand K, Donn L. 1990. A component analysis of functional commu-nication training across three topographies of severe behavior problems. Journal of Applied Behavior Analyse 23, 417-429.

Wehner J, Antunes PM, Powell JR, Mazukatow J, Rillig MC. 2009. Plant pathogen protection by arbuscular mycorrhizas: A role for fungal diversity? Pedobiologia 10, 1016-1021.

Zivkovic S, Stojanovic S, Ivanovic Z, Gavrilovic V, Popovic T, Balaž J. 2010. Sreening of antagonistic activity of microorganisms against Colletortrichum acutatum and Colletotrichum gloeosporioides. Archives of Biological Sciences 62(3), 611-623.