Prevalence of molecular markers of virulence in Candida albicans strains from Vulvovaginal infections in Abidjan, Côte d’Ivoire

Paper Details

Research Paper 08/10/2024
Views (51) Download (13)
current_issue_feature_image
publication_file

Prevalence of molecular markers of virulence in Candida albicans strains from Vulvovaginal infections in Abidjan, Côte d’Ivoire

Akpa Paterne Gnagne, Abibatou Konaté-Touré, Valérie Akoua Bédia-Tanoh, Fulgence Kondo Kassi, Estelle Gnanyo Massafoma Koné, Hervé Eby Ignace Menan, William Yavo
Int. J. Micro. Myco.19( 4), 1-7, October 2024.
Certificate: IJMM 2024 [Generate Certificate]

Abstract

Candidiasis is the term for disseminated, visceral, and mucocutaneous infections. The majority of these infections are caused by the species Candida albicans. C. albicans can infect such diverse host niches because it is supported by a variety of virulence factors and fitness attributes. These factors, particularly biofilm production, may explain treatment failures; for example, biofilm-producing strains show increased resistance to antifungal drugs and host immunity. Several genes are thought to promote biofilm formation, including those for hyphal wall protein 1 (hwp1), agglutinin-like sequence 1 (ALS1), and agglutinin-like sequence 3 (ALS3). This research aimed to detect the prevalence of virulence markers (hwp1 and ALS1) of C. albicans that were isolated from patients with vulvovaginal candidiasis. DNA extracts of C. albicans were obtained from the conserved strains. These strains were then confirmed through the application of molecular biology. The hwp1 gene was observed in 95.8% of C. albicans, and the ALS1 gene in 97.9%. The simultaneous presence of ALS1 and hwp1 genes was observed in 94.4% of C. albicans species. As the hwp1 and ALS1 genes play important roles in biofilm formation, which adds to the virulence of C. albicans, they could be targets for vulvovaginal candidiasis therapy.

VIEWS 28

Alberti-Segui C, Morales AJ, Xing H, Kessler MM, Willins DA, Weinstock KG, Cottarel G, Fechtel K, Rogers B. 2004. Identification of potential cell-surface proteins in Candida albicans and investigation of the role of a putative cell-surface glycosidase in adhesion and virulence. Yeast 21, 285–302. https://doi.org/10.1002/yea.1061

Ardehali SH, Azimi T, Fallah F, Aghamohammadi N, Alimehr S, Karimi AM, Azimi L. 2019. Molecular detection of ALS1, ALS3, HWP1 and SAP4 genes in Candida Genus isolated from hospitalized patients in Intensive Care Unit, Tehran, Iran. Cell Mol Biol (Noisy-le-grand) 65, 15–22. https://doi.org/10.14715/cmb/2019.65.4.3

Berkow EL, Lockhart SR. 2017. Fluconazole resistance in Candida species: a current perspective. Infect Drug Resist 10, 237–245. https://doi.org/10.2147/IDR.S118892

Brunetti G, Navazio AS, Giuliani A, Giordano A, Proli EM, Antonelli G, Raponi G. 2019. Candida bloodstream infections observed between 2011 and 2016 in a large Italian University Hospital: A time-based retrospective analysis on epidemiology, biofilm production, antifungal agents consumption, and drug-susceptibility. PLoS One 14, e0224678. https://doi.org/10.1371/journal.pone.0224678

Codreanu SI, Ciurea CN. 2023. Candida spp. DNA Extraction in the Age of Molecular Diagnosis. Microorganisms 11, 818. https://doi.org/10.3390/microorganisms11040818

Dawoud AM, Saied SA, Torayah MM, Ramadan AE, Elaskary SA. 2024. Antifungal susceptibility and virulence determinants profile of Candida species isolated from patients with candidemia. Sci Rep 14, 11597. https://doi.org/10.1038/s41598-024-61813-w

Diekema D, Arbefeville S, Boyken L, Kroeger J, Pfaller M. 2012. The changing epidemiology of healthcare-associated candidemia over three decades. Diagn Microbiol Infect Dis 73, 45–48. https://doi.org/10.1016/j.diagmicrobio.2012.02.001

Djohan V, Angora KE, Vanga-Bosson AH, Konaté A, Kassi FK, Yavo W, Kiki-Barro PC, Menan H, Koné M. 2012. Sensibilité in vitro des souches de Candida albicans d’origine vaginale aux antifongiques à Abidjan (Côte d’Ivoire). Journal de Mycologie Médicale 22, 129–133. https://doi.org/10.1016/j.mycmed.2011.11.005

Du H, Guan G, Xie J, Sun Y, Tong Y, Zhang L, Huang G. 2012. Roles of Candida albicans Gat2, a GATA-Type Zinc Finger Transcription Factor, in Biofilm Formation, Filamentous Growth, and Virulence. PLOS ONE 7, e29707. https://doi.org/10.1371/journal.pone.0029707

Eghtedar Nejad E, Ghasemi Nejad Almani P, Mohammadi MA, Salari S. 2020. Molecular identification of Candida isolates by Real‐time PCR‐high‐resolution melting analysis and investigation of the genetic diversity of Candida species. J Clin Lab Anal 34, e23444. https://doi.org/10.1002/jcla.23444

Fu Y, Ibrahim AS, Sheppard DC, Chen YC, French SW, Cutler JE, Filler SG, Edwards JE Jr. 2002. Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Molecular Microbiology 44, 61–72. https://doi.org/10.1046/j.1365-2958.2002.02873.x

Goulart LS, Lima JS de, Souza WWR de, Vieira CA, Crestani J, Araújo C. 2018. Analysis of the ALS1 and HWP1 genes from clinical isolates of Candida albicans / Análise de genes ALS1 e HWP1 em isolados clínicos de Candida albicans. Brazilian Journal of Health Review 1, 112–119.

Granger BL, Flenniken ML, Davis DA, Mitchell AP, Cutler JE. 2005. Yeast wall protein 1 of Candida albicans. Microbiology 151, 1631–1644. https://doi.org/10.1099/mic.0.27663-0

İNci̇ M, Atalay MA, Özer B, Evi̇Rgen Ö, Duran N, Motor VK, Koç AN, Önlen Y, Kilinç Ç, Durmaz S. 2013. Investigations of ALS1 and HWP1 genes in clinical isolates of Candida albicans. Turkish Journal of Medical Sciences 43, 22. https://doi.org/10.3906/sag-1205-90

Martorano-Fernandes L, Goodwine JS, Ricomini-Filho AP, Nobile CJ, Del Bel Cury AA. 2023. Candida albicans Adhesins Als1 and Hwp1 Modulate Interactions with Streptococcus mutans. Microorganisms 11, 1391. https://doi.org/10.3390/microorganisms11061391

Mathé L, Van Dijck P. 2013. Recent insights into Candida albicans biofilm resistance mechanisms. Curr Genet 59, 251–264. https://doi.org/10.1007/s00294-013-0400-3

Mayer F, Wilson D, Hube B. 2013. Candida albicans pathogenicity mechanisms. Virulence 4. https://doi.org/10.4161/viru.22913

Mohammadi F, Hemmat N, Bajalan Z, Javadi A. 2021. Analysis of Biofilm-Related Genes and Antifungal Susceptibility Pattern of Vaginal Candida albicans and Non-Candida albicans Species. BioMed Research International 2021, 5598907. https://doi.org/10.1155/2021/5598907

Nobile CJ, Nett JE, Andes DR, Mitchell AP. 2006. Function of Candida albicans Adhesin Hwp1 in Biofilm Formation. Eukaryot Cell 5, 1604–1610. https://doi.org/10.1128/EC.00194-06

Roudbarmohammadi S, Roudbary M, Bakhshi B, Katiraee F, Mohammadi R, Falahati M. 2016. ALS1 and ALS3 gene expression and biofilm formation in Candida albicans isolated from vulvovaginal candidiasis. Adv Biomed Res 5, 105. https://doi.org/10.4103/2277-9175.183666

Segal E, Frenkel M. 2018. Experimental In Vivo Models of Candidiasis. Journal of Fungi 4, 21. https://doi.org/10.3390/jof4010021

Taqi AL-Khazali M, Mousa Hassan B, Ahmed AbedIbrahim S. 2023. Molecular Identification of Candida albicans and C. dubliniensis Using Small Subunit rRNA Gene Sequence in Kerbala, Iraq. Arch Razi Inst 78, 1035–1040. https://doi.org/10.22092/ARI.2022.360086.2546

Theill L, Dudiuk C, Morano S, Gamarra S, Nardin ME, Méndez E, Garcia-Effron G. 2016. Prevalence and antifungal susceptibility of Candida albicans and its related species Candida dubliniensis and Candida africana isolated from vulvovaginal samples in a hospital of Argentina. Rev Argent Microbiol 48, 43–49. https://doi.org/10.1016/j.ram.2015.10.003

Treviño-Rangel RDJ, Peña-López CD, Hernández-Rodríguez PA, Beltrán-Santiago D, González GM. 2018. Association between Candida biofilm-forming bloodstream isolates and the clinical evolution in patients with candidemia: An observational nine-year single center study in Mexico. Revista Iberoamericana de Micología 35, 11–16. https://doi.org/10.1016/j.riam.2017.01.005