Protein quantification of mixed microalgae consortia under different concentration of Coal fired flue gas

Paper Details

Research Paper 01/02/2017
Views (358) Download (12)
current_issue_feature_image
publication_file

Protein quantification of mixed microalgae consortia under different concentration of Coal fired flue gas

Ambreen Aslam, Tahira Aziz Mughal, Skye R. Thomas-Hall, Peer M. Schenk, Shazia Pervaiz
Int. J. Biosci.10( 2), 72-80, February 2017.
Certificate: IJB 2017 [Generate Certificate]

Abstract

Microalgae have abundant ecological relevance because of its significant contribution in global carbon fixation. During last decade, microalgae became increasingly interesting for biotechnology as it provides many natural products. Microalgae are promising sources to enhance nutrition of food and animal feedstock as it contain high value biochemical compounds including fatty acids, protein etc. The present study evaluated the protein content from mixed microalgae consortia under different CO2 concentrations (1%, 3% and 5.5%) from coal-fired flue gas. CB-X Protein Assay Kit (G Biosciences) was used for measurement of protein concentration from all microalgal samples. Under 1% CO2 concentration, UQ-Lake (F) showed high protein content 39.3±1.89% which make algae attractive to be used as feed and nutrition supplement for animal. Mixed culture grown in nutrient rich media under air as control samples and in flue gas as CO2 source as an attempt to reduce greenhouse gases in atmosphere.

VIEWS 7

Adams C, Bugbee B. 2014. Nitrogen retention and partitioning at the initiation of lipid accumulation in nitrogen‐deficient algae. Journal of Phycology 50(2), 356-365. http://dx.doi.org/10.1111/jpy.12167

Becker EW. 2007. Micro-algae as a source of protein, Biotechnology Advances 25(2), 207-10. http://dx.doi.org/10.1016/j.biotechadv.2006.11.002

Becker EW. 2013. Microalgae for human and animal nutrition, in A Richmond & Q Hu (eds), Handbook of microalgal culture, John Wiley & Sons, Ltd., p. 461-503. http://dx.doi.org/10.1002/9781118567166.ch25

Brown MR, Jeffrey SW. 1992. Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 1. Amino acids, sugars and pigments. Journal of experimental marine biology and ecology 161(1), 91-113. http://dx.doi.org/10.1016/0022-0981(92)90193-E

Buono S, Langellotti AL, Martello A, Rinna F, Fogliano V. 2014. Functional ingredients from microalgae. Food and Function 5(8), 1669-1685.  http://dx.doi.org/10.1039/c4fo00125g

Chen CY, Lee PJ, Tan CH, Lo YC, Huang CC, Show PL,… Chang JS. 2015. Improving protein production of indigenous microalga Chlorella vulgaris FSP‐E by photobioreactor design and cultivation strategies. Biotechnology journal 10(6), 905-914. http://dx.doi.org/10.1002/biot.201400594

Fidalgo Paredes P, Cid Blanco A, Torres E, Sukenik A, Herrero López C. 1998. Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga” Isochrysis Galbana. Aquaculture 166(1-2), 105-116. http://dx.doi.org/10.1016/S0044-8486(98)00278-6

Gatenby CM, Orcutt DM, Kreeger DA, Parker BC, Jones VA. Neves RJ. 2003. Biochemical composition of three algal species proposed as food for captive freshwater mussels. Journal of Applied Phycology15(1), 1-11. http://dx.doi.org/10.1023/A:1022929423011

Georgianna DR, Mayfield SP. 2012. Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488, 329–335. http://dx.doi.org/10.1038/nature11479

Henderson RJ, Sargent JR. 1989. Lipid composition and biosynthesis in ageing cultures of the marine Cryptomonad, Chroomonas salina. Phytochemistry 28(5), 1355-1361. http://dx.doi.org/10.1016/S0031-9422(00)97745-8

Hu Q. 2013. Environmental effects on cell composition, in A Richmond & Q Hu (Eds), Handbook of microalgal culture, John Wiley & Sons, Ltd., p. 114-22. http://dx.doi.org/10.1002/9781118567166.ch7

Illman AM, Scragg AH, Shales SW. 2000. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and microbial technology 27(8), 631-635. http://dx.doi.org/10.1016/S0141-0229(00)00266-0

Kent M, Welladsen HM, Mangott A, Li Y. 2015. Nutritional evaluation of Australian microalgae as potential human health supplements, PLoS One 10(2), p. e0118985. http://dx.doi.org/10.1371/journal.pone.0118985

Khan SA, Rashmi Hussain MZ, Prasad S, Banerjee UC. 2009. Prospects of biodiesel production from microalgae in India. Renewable and Sustainable Energy Reviews 13(9), 2361-2372. http://dx.doi.org/10.1016/j.rser.2009.04.005

Kightlinger W, Chen K, Pourmir A, Crunkleton DW, Price GL, Johannes TW. 2014. Production and characterization of algae extract from Chlamydomonas reinhardtii. Electronic Journal of Biotechnology 17(1), 3-3. http://dx.doi.org/10.1016/j.ejbt.2013.12.003

Lee Y-K, Chen W, Shen H, Han D, Li Y, Jones HDT, Timlin JA, Hu Q. 2013. Basic culturing and analytical measurement techniques’, in A Richmond & Q Hu (Eds), Handbook of microalgal culture, John Wiley & Sons, Ltd., 37-68. http://dx.doi.org/10.1002/9781118567166.ch3

Leonardos N, Lucas IA. 2000. The nutritional value of algae grown under different culture conditions for Mytilus edulis L. larvae. Aquaculture 18(3-4), 301-315. http://dx.doi.org/10.1016/S0044-8486(99)00269-0

Lopez CV, Garcia Mdel C, Fernandez FG, Bustos CS, Chisti Y, Sevilla JM. 2010.Protein measurements of microalgal and cyanobacterial biomass. Bioresource Technology 101(19), 7587-7591. http://dx.doi.org/10.1016/j.biortech.2010.04.077

Mahdy A, Mendez L, Ballesteros M, Fernandez CG. 2015. Algal culture integration in conventional wastewater treatment plants: anaerobic digestion comparison of primary and secondary sludge with microalgae biomass. Bioresource Technology 184, 236-244. http://dx.doi.org/10.1016/j.biortech.2014.09.145

Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews 14(1), 217-232. http://dx.doi.org/10.1016/j.rser.2009.07.020

McGlathery KJ, Pedersen MF, Borum J. 1996. Changes in intracellular nitrogen pools and feedback controls on nitrogen uptake in Chaetomorpha linum (Chlorophyta).Journal of Phycology 32(3), 393-401. http://dx.doi.org/10.1111/j.0022-3646.1996.00393.x

Oody JW, Mc Ginty CM, Quinn JC. 2014. Global evaluation of biofuel potential from microalgae. Proceeding of the National Academy of Sciences 111(23), 8691-8696. http://dx.doi.org/10.1073/pnas.132165211

Piorreck M, Pohl P. 1984. Formation of biomass, total protein, chlorophylls, lipids and fatty acids in green and blue-green algae during one growth phase. Phytochemistry 23(2), 217-223. http://dx.doi.org/10.1016/S0031-9422(00)80305-2

Raja R, Hemaiswarya S, Kumar NA, Sridhar S, Rengasamy R. 2008. A perspective on the biotechnological potential of microalgae. Critical Review Microbiology 34(2), 77-88. http://dx.doi.org/10.1080/10408410802086783

Renaud SM, Parry DL, Thinh LV. 1994. Microalgae for use in tropical aquaculture I: Gross chemical and fatty acid composition of twelve species of microalgae from the Northern Territory, Australia. Journal of Applied Phycology 6(3), 337-345. http://dx.doi.org/10.1007/BF02181948

Seyfabadi J, Ramezanpour Z, Amini Khoeyi Z. 2011. Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. Journal of Applied Phycology 23(4), 721-726. http://dx.doi.org/10.1007/s10811-010-9569-8

Spolaore P, Joannis-Cassan C, Duran E, Isambert A. 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering101(2), 87-96. http://dx.doi.org/10.1263/jbb.101.87

Wang B, Li Y, Wu N,  Lan CQ. 2008. CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology 79(5), 707-718. http://dx.doi.org/10.1007/s00253-008-1518-y

Wijffels RH, Barbosa MJ. 2010. An outlook on microalgal biofuels. Science 329(5993), 796-799. http://dx.doi.org/10.1126/science.1189003

Wikfors GH, Ferris GE, Smith BC. 1992. The relationship between gross biochemical composition of cultured algal foods and growth of the hard clam, Mercenaria mercenaria (L.). Aquaculture 108(1-2), 135-154. http://dx.doi.org/10.1016/0044-8486(92)90324-E

Zhu LD, Hiltunen E, Antila E, Zhong JJ, Yuan ZH, Wang ZM. 2014. Microalgal biofuels: flexible bioenergies for sustainable development. Renewable Sustainable Energy Review 30, 1035-1046. http://dx.doi.org/10.1016/j.rser.2013.11.003