Purification and characterization of amyloglucosidase produced by a mutant strain of Aspergillus Niger

Paper Details

Research Paper 01/11/2016
Views (723)
current_issue_feature_image
publication_file

Purification and characterization of amyloglucosidase produced by a mutant strain of Aspergillus Niger

Shazia Malik, IkramulHaq, Tehreema Iftikhar
Int. J. Biosci. 9(5), 108-115, November 2016.
Copyright Statement: Copyright 2016; The Author(s).
License: CC BY-NC 4.0

Abstract

Amyloglucosidases, are the enzymes which releases glucose by hydrolyzing starch and oligosachharides as it hydrolyzes µ-1, 4 and µ-1, 6 linkages of the saccharides formed by the action of other amylases on starch and has great importance in the starch industries. The present study is concerned with the partial purification of amyloglucosidase produced by the mutant strain of Aspergillusniger using ammonium sulphate precipitation method and characterization of the enzyme. The maximum activity of amyloglucosidase was achieved after 60 min of incubation when maintained at pH 4.75 and temperature of 60oC with 5% starch concentration.

Arassaratnam KT, Vasanthy Z, Muragapoopthy, Thiagarajah JK, Balasubramanium R, Kandiah S. 1994. Effect of pH on preparation and performance of physically immobilized amyloglucosidase on DEAE cellulose. Starch/Staerke  Eng  46(4), 1467-1469.

Arassaratnam V, Mylvagunam K, Balasubramanian T. 1997. Paddy husk support and rice bran for production of glucoamylase by Aspergillus niger. J. Food Sci. Technol  32(4), 299-304.

Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry  72, 248-254.

Costa JAV, Colla E, Magagnin G, Santos LO, Vendruscolo M, Bertolin TE. 2007. Simultaneous amyloglucosidase and exopolygalacturonase production by Aspergillus niger using solid state fermentation. Braz Arch Boil Technol 50(5), www.dx.doi.org/10.1590/S151689132007000500003

Deutscher MP. 1990. Guide to protein purification. Methods in enzymology 182, 285-295.

Dilera G, Chevalliera S, Pöhlmanna I, Guyona C, Guillouxa M, Le-Baila A. 2015. .Assessment of amyloglucosidase activity during production and storage of laminated pie dough. Impact on raw dough properties and sweetness after baking J of Cereal Science  61, 63–70.

Fogarty WM, Benson CP. 1983. Purification and properties of a thermophilicamyloglucosidase from Aspergillus niger. J Appl Microbiol Biotechnol  18(5), 271-278.

Ford C. 1999. Improving operating performance of glucoamylase by mutagenesis. Curr Opin Biotechnol 10,  352–357.

Haq I, Ashraf H, Omar S, Qadeer MA. 2002. Biosynthesis of amyloglucosidase by Aspergillus niger using wheat bran as substrate. Pak. J  of Biol  Sci  5(9),  962-964.

Hyun HH, Zeikas JC. 1985. General biochemical characterization of Thermostable pollulanase and glucoamylase from Clostridium thermohydrosufuricum. Appl  Environ  Microbiol  49(5), 1168-1173.

Kelly CT, Reilly FO, Fogarty WM. 1983. Extracellular alpha-glucosidase of an alkalophilic microorganism, Bacillus spp ATCC 21591. Microb Lett 20, 55-59.

Khalaj V, Brookman JL, Robson GD. 2001. A study of the protein secretary pathway of Aspergillus niger using a glucoamylase-GFP Fusion protein. Fungal Genet. Biol 32(1), 55-65.

Laemmli UK. 1970. Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227, 680-685.

Malik S, Iftikhar T, Haq IU. 2011. Enhanced amyloglucosidase biosynthesis through mutagenesis using Aspergillus niger. Pak  J.  Bot 43(1), 111-119.

Manera AP, Kamimura ES, Brites LM, Khalil SJ. 2008. Adsorption of Amyloglucosidase from Aspergillus niger NRRL 3122 using Ion Exchange Resin  Braz  Arch  Of Biol  Technol  51(5), 1015- 1024.

Omemu AM, Akpan I, Bankole MO, Teniola OD. 2005. Hydrolysis of raw tuber starches by amylase of Aspergillus niger AM07 isolated from the soil. Afric  J of Biotechnol  4(1), 19-25.

Omemu AM, Akpan I, Bankole MO. 2008. Purification and characterization of extracellular Amyloglucosidase from Aspergillusniger CA-19 by solid state fermentation. Res. J. Microbiol  3(3),  129-135.

Pandey, Radhakrishan S. 1993. The production of glucoamylase by Aspergillus niger  NCIM 1245. Process Biochem  8,  305-309.

Pavezzi  FC, Gomes E, Silva R. 2008. Production and characterization of glucoamylase from fungus Aspergillus awamori expressed in yeast Saccharomyces cerevisiae using different carbon sources. Braz J. Microbiol  39(1), www.dx.doi.org/10.1590/S151783822008000100024

Polakovic  M, Bryjak J.  2004. Modelling of potato starch saccharification by an Aspergillus niger glucoamylase. J. Biochem  Eng 18,  57–64.

Preda G, Boeriu C, Deretey E, Peter F. 1996. Characterization of an amyloglucosidase by Aspergillusniger 1C strain. Ser Chin Ind Ing Mediului 41(12), 35-42.

Reilly PJ. 1999. Protein engineering of glucoamylase to improve industrial performance – a review. Starch/Starke  51,  269–274.

Roe S. 2001. Protein purification techniques. 2nd edition. Oxford University press. 134-142.

Singh S. 2007. A text book of Enzymes. CBI Publishers. 1, 15-33.

Selva KP, Ashakumary L, Helen A, Pandey A. 1996. Purification and characterization of glucoamylase produced by Aspergillusniger in solid state fermentation. Appl  Microbiol  Lett 23(6), 403-408.

Spier MR, Woiciechowski AL, Vandenberghe LPS, Soccol CR. 2006. Production and characterization of Amylases by Aspergillus niger under solid state fermentation using Agro industrials products. International Journal of Food Engeenering  2(3), 1-20.

Tsekovak K, Vicheva A, Tzekova A. 1999. Enhanced thermostability of glucoamylase by Aspergillus niger. Microbiologia 50(7-8), 181-185.

Related Articles

Response of different soybean varieties to phosphorus fertilizer microdosing and rhizobium inoculation in the sub-humid zone of Northern Benin

Pierre G. Tovihoudji*, Kamarou-Dine Seydou, Lionel Zadji, Sissou Zakari, Valerien A. Zinsou, Int. J. Biosci. 27(6), 201-213, December 2025.

On-farm validation of black soldier fly larvae meal as a sustainable replacement for shrimp meal in rainbow trout diets in the mid hills of Nepal

Ishori Singh Mahato, Krishna Paudel*, Sunita Chand, Anshuka Bhattarai, Int. J. Biosci. 27(6), 189-200, December 2025.

Insect fauna associated with Cucumis sativus (Cucurbitales: Cucurbitaceae) in Parakou, A cotton-growing area of central Benin

Lionel Zadji*, Mohamed Yaya, Roland Bocco, Prudencia M. Tovignahoua, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, Hugues Baimey, Leonard Afouda, Int. J. Biosci. 27(6), 175-188, December 2025.

First record of two hymenopteran species, Brachymeria excarinata Gahan (Chalcididae) and Pteromalus sp. (Pteromalidae), as hyperparasitoids of Diadegma insulare in Senegal

Babacar Labou*, Etienne Tendeng, Mamadou Diatte, El hadji Sérigne Sylla, Karamoko Diarra, Int. J. Biosci. 27(6), 167-174, December 2025.

Hepatoprotective and antinociceptive effects of terpinolene in streptozotocin-induced diabetic peripheral neuropathic rats

Ravishankar Sarumathi, Muthukumaran Preethi, Chandrasekaran Sankaranarayanan*, Int. J. Biosci. 27(6), 156-166, December 2025.

Agromorphological characterization of six promising bambara groundnut [Vigna subterranea (L.) Verdc.] genotypes under selection in Burkina Faso

Adjima Ouoba*, Ali Lardia Bougma, Dominique Nikiéma, Mahamadi Hamed Ouédraogo, Nerbéwendé Sawadogo, Mahama Ouédraogo, Int. J. Biosci. 27(6), 145-155, December 2025.

Integrated in silico and in vitro analyses reveal E-cadherin crosstalk and TF: FVIIa complex-mediated trophoblast motility via MEK/JNK activation

Kirthika Manoharan, Jagadish Krishnan, Vijaya Anand Arumugam, Shenbagam Madhavan*, Int. J. Biosci. 27(6), 136-144, December 2025.

Effect of flooding depth and harvest intensity on soil moisture dynamics and production of baobab (Adansonia digitata) seedlings

Sissou Zakari, Pierre G. Tovihoudji, Mouiz W. I. A. Yessoufou, Sékaro Amamath Boukari, Vital Afouda, Imorou F. Ouorou Barrè, Int. J. Biosci. 27(6), 127-135, December 2025.