Qualitative and quantitative analysis on colonizing facial bacterial strains among tertiary students of Iligan City

Paper Details

Research Paper 01/10/2018
Views (578)
current_issue_feature_image
publication_file

Qualitative and quantitative analysis on colonizing facial bacterial strains among tertiary students of Iligan City

Primrose M. Odtojan, Lucilyn L. Maratas
Int. J. Biosci. 13(4), 166-172, October 2018.
Copyright Statement: Copyright 2018; The Author(s).
License: CC BY-NC 4.0

Abstract

The most prominent skin-covered anatomical region is the human face which is a privileged site for growth of microorganisms. This study was conducted to provide information in establishing healthy baseline of facial microflora. This study involved a convenience sample of 135 healthy tertiary students with no evident skin infections. The skin surface samples were obtained by the swab method and all samples were allowed to grow on nutrient agar to determine colonization rates. All clinical samples exhibited bacterial growth   on nutrient agar   while 87% of the MSA plates had growth of bacterial colonies. Two hundred sixty-seven isolated bacterial colonies were randomly picked from NA and MSA plates and were purified and subjected to different identification techniques – colonial characterization, staining for cellular morphologies and biochemical tests. Through these conventional methods of identification, four bacterial species were identified up the genus level: Staphylococcus remained the predominant genus of the superficial skin microbiota at 39% ( Staphylococcus aureus) and 19% (coagulase negative staphylococci); followed by Micrococcus (2%), and Bacillus sp.(1%).

Coagulase Test: Principle, procedure and interpretation. 2018. https://microbeonline.com/diagnostic-tests-biochemical-tests-coagulase-test/

Cogen AL, Yamasaki K, Sanchez KM, Dorschner RA, Lai Y, MacLeod DT, Torpey JW, Otto M, Nizet V, Kim JE, Gallo RL. 2010. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. Journal of Investigative Dermatology 130(1), 192-200. http://dx.doi.org/10.1038/jid.2009.243.

Cogen AL, Nizet V, Gallo RL. 2008. Skin microbiota: a source of disease or defence? British Journal of Dematology 158(3), 442-455. https://doi.org/10.1111/j.1365-2133.2008.08437.x

Dekio I. 2012. Microorganisms and Atopic Dermatitis, Atopic Dermatitis Jorge Esparza-Gordillo and Itaru Dekio, Intech Open, Available from: http://dx.doi.org/10.5772/25374.

Grice EA, Segre JA. 2011. Skin Microbiome. Nature Reviews Microbiology 9, 244-253. http://dx.doi.org/10.1038/nrmicro2537

Gloor M, Peters G, Stoika D. 1982. On the resident aerobic bacterial skin flora in unaffected skin of patients with atopic dermatitis and in healthy controls. Dermatologica 164(4), 258-265.

MacFaddin JF. 2000. Catalase-Peroxidase Tests. Biochemical Tests for Identification of Medical Bacteria. 3rd ed. Philadelphia: Lippincott Williams and Wilkins; 78-97.

Murillo N, Raoult D. 2013. Skin microbiota: overview and role in the skin diseases acne vulgaris and rosacea. Future Microbiology 8(2), 209-222. http://dx.doi.org/10.2217/fmb.12.141

Ogawa T, Katsuoka K, Kawano K, NIshiyama S. 1994. Comparative study of staphylococcal flora on the skin surface of atopic dermatitis patients and healthy subjects. Journal of Dermatology 21(7),453-60.

Triple Sugar Iron Agar (TSI): Principle, Procedure and Interpretation. 2018.

Todar K. 2012. The Normal Bacterial Flora of Humans. Todar’s Online Textbook of Bacteriology.

Related Articles

Muscle type and meat quality of local chickens according to preslaughter transport conditions and sex in Benin

Assouan Gabriel Bonou*, Finagnon Josée Bernice Houéssionon, Kocou Aimé Edenakpo, Serge Gbênagnon Ahounou, Chakirath Folakè Arikè Salifou, Issaka Abdou Karim Youssao, Int. J. Biosci. 27(6), 241-250, December 2025.

Effects of micronutrients and timing of application on the agronomic and yield characteristics of cucumber (Cucumis sativus)

Princess Anne C. Lagcao, Marissa C. Hitalia*, Int. J. Biosci. 27(6), 214-240, December 2025.

Response of different soybean varieties to phosphorus fertilizer microdosing and rhizobium inoculation in the sub-humid zone of Northern Benin

Pierre G. Tovihoudji*, Kamarou-Dine Seydou, Lionel Zadji, Sissou Zakari, Valerien A. Zinsou, Int. J. Biosci. 27(6), 201-213, December 2025.

On-farm validation of black soldier fly larvae meal as a sustainable replacement for shrimp meal in rainbow trout diets in the mid hills of Nepal

Ishori Singh Mahato, Krishna Paudel*, Sunita Chand, Anshuka Bhattarai, Int. J. Biosci. 27(6), 189-200, December 2025.

Insect fauna associated with Cucumis sativus (Cucurbitales: Cucurbitaceae) in Parakou, A cotton-growing area of central Benin

Lionel Zadji*, Mohamed Yaya, Roland Bocco, Prudencia M. Tovignahoua, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, Hugues Baimey, Leonard Afouda, Int. J. Biosci. 27(6), 175-188, December 2025.

First record of two hymenopteran species, Brachymeria excarinata Gahan (Chalcididae) and Pteromalus sp. (Pteromalidae), as hyperparasitoids of Diadegma insulare in Senegal

Babacar Labou*, Etienne Tendeng, Mamadou Diatte, El hadji Sérigne Sylla, Karamoko Diarra, Int. J. Biosci. 27(6), 167-174, December 2025.

Hepatoprotective and antinociceptive effects of terpinolene in streptozotocin-induced diabetic peripheral neuropathic rats

Ravishankar Sarumathi, Muthukumaran Preethi, Chandrasekaran Sankaranarayanan*, Int. J. Biosci. 27(6), 156-166, December 2025.