Qualitative and quantitative analysis on colonizing facial bacterial strains among tertiary students of Iligan City

Paper Details

Research Paper 01/10/2018
Views (566)
current_issue_feature_image
publication_file

Qualitative and quantitative analysis on colonizing facial bacterial strains among tertiary students of Iligan City

Primrose M. Odtojan, Lucilyn L. Maratas
Int. J. Biosci. 13(4), 166-172, October 2018.
Copyright Statement: Copyright 2018; The Author(s).
License: CC BY-NC 4.0

Abstract

The most prominent skin-covered anatomical region is the human face which is a privileged site for growth of microorganisms. This study was conducted to provide information in establishing healthy baseline of facial microflora. This study involved a convenience sample of 135 healthy tertiary students with no evident skin infections. The skin surface samples were obtained by the swab method and all samples were allowed to grow on nutrient agar to determine colonization rates. All clinical samples exhibited bacterial growth   on nutrient agar   while 87% of the MSA plates had growth of bacterial colonies. Two hundred sixty-seven isolated bacterial colonies were randomly picked from NA and MSA plates and were purified and subjected to different identification techniques – colonial characterization, staining for cellular morphologies and biochemical tests. Through these conventional methods of identification, four bacterial species were identified up the genus level: Staphylococcus remained the predominant genus of the superficial skin microbiota at 39% ( Staphylococcus aureus) and 19% (coagulase negative staphylococci); followed by Micrococcus (2%), and Bacillus sp.(1%).

Coagulase Test: Principle, procedure and interpretation. 2018. https://microbeonline.com/diagnostic-tests-biochemical-tests-coagulase-test/

Cogen AL, Yamasaki K, Sanchez KM, Dorschner RA, Lai Y, MacLeod DT, Torpey JW, Otto M, Nizet V, Kim JE, Gallo RL. 2010. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. Journal of Investigative Dermatology 130(1), 192-200. http://dx.doi.org/10.1038/jid.2009.243.

Cogen AL, Nizet V, Gallo RL. 2008. Skin microbiota: a source of disease or defence? British Journal of Dematology 158(3), 442-455. https://doi.org/10.1111/j.1365-2133.2008.08437.x

Dekio I. 2012. Microorganisms and Atopic Dermatitis, Atopic Dermatitis Jorge Esparza-Gordillo and Itaru Dekio, Intech Open, Available from: http://dx.doi.org/10.5772/25374.

Grice EA, Segre JA. 2011. Skin Microbiome. Nature Reviews Microbiology 9, 244-253. http://dx.doi.org/10.1038/nrmicro2537

Gloor M, Peters G, Stoika D. 1982. On the resident aerobic bacterial skin flora in unaffected skin of patients with atopic dermatitis and in healthy controls. Dermatologica 164(4), 258-265.

MacFaddin JF. 2000. Catalase-Peroxidase Tests. Biochemical Tests for Identification of Medical Bacteria. 3rd ed. Philadelphia: Lippincott Williams and Wilkins; 78-97.

Murillo N, Raoult D. 2013. Skin microbiota: overview and role in the skin diseases acne vulgaris and rosacea. Future Microbiology 8(2), 209-222. http://dx.doi.org/10.2217/fmb.12.141

Ogawa T, Katsuoka K, Kawano K, NIshiyama S. 1994. Comparative study of staphylococcal flora on the skin surface of atopic dermatitis patients and healthy subjects. Journal of Dermatology 21(7),453-60.

Triple Sugar Iron Agar (TSI): Principle, Procedure and Interpretation. 2018.

Todar K. 2012. The Normal Bacterial Flora of Humans. Todar’s Online Textbook of Bacteriology.

Related Articles

Proximate analysis of pelleted sorghum-based feeds as substitute for corn

I. I. Juan S. Daquioag, Michael M. Uy, Int. J. Biosci. 27(5), 232-236, November 2025.

Evolution of the weight of carcasses and offal of Cobb 500 broiler chickens according to the age of slaughter

Soro Soronikpoho, Kouadio Kouakou Parfait, Kouassi Koffi Dongo, Brou Gboko Konan Gatien, Int. J. Biosci. 27(5), 225-231, November 2025.

Agronomic performance of the newly pruned coffee trees at the CSU Lal-lo old coffee plantation

Maribel L. Fernandez, Florante Victor M. Balatico, Ronel A. Collado, Int. J. Biosci. 27(5), 217-224, November 2025.

A comprehensive review and meta-analysis on Alzheimer’s genetics: Exploring the genetic architecture and its application in future genomic medicine

Shafee Ur Rehman, Shabeer Khan, Muhammad Usman, Sakarie Khadar Ibrahim, Int. J. Biosci. 27(5), 204-216, November 2025.

Effect of aqueous leaf extract of Senna occidentalis (Fabaceae) on induced arrhythmia in Rabbits

Obrou Jean Luc Amiltone, Nagalo Ousmane, Mossoun Mossoun Arsène, Abo Kouakou Jean-Claude, Int. J. Biosci. 27(5), 198-203, November 2025.

Targeting proteolytic enzymes in the hemoglobin degradation pathway to inhibit Plasmodium falciparum: An in silico approach

Sethupathi Virumandi, Elumalai Balamurugan, Aakash Ganesan, Sowmiya Ganesan, Srinidhi Raveenthiran, Int. J. Biosci. 27(5), 182-197, November 2025.

Composition and variation of milk from Djallonké goats fed with different diets in Burkina Faso

Alice Gisèle Sidibé-Anago, Vinsoun Millogo, Assouan Gabriel Bonou, Remadji Rufine Djikoldingam, Mariétou Sissao, Michel Kéré, Guy Apollinaire Mensah, Int. J. Biosci. 27(5), 173-181, November 2025.

Antagonestic activity of Trichoderma viride against legume plant field soil associated pathogens

R. Nithyatharani, S. Subashini, Int. J. Biosci. 27(5), 169-172, November 2025.