Quality characteristics and risk assessment of arsenic in drinking water of different Villages of District Sujawal, Sindh, Pakistan

Paper Details

Research Paper 01/09/2020
Views (701)
current_issue_feature_image
publication_file

Quality characteristics and risk assessment of arsenic in drinking water of different Villages of District Sujawal, Sindh, Pakistan

Abdul Raheem Shar, Ghulam Qadir Shar, Mushtaque Ali Jakhrani, Shahid Ali Jakhrani, Noor Zaman, Noor Ul Hassan Shar, Muhammad Bux Shar, Atta Hussain Rind, Khalid Ahmed Bhutto
Int. J. Biosci. 17(3), 287-294, September 2020.
Copyright Statement: Copyright 2020; The Author(s).
License: CC BY-NC 4.0

Abstract

The purpose of present study was to create awareness on the effect of contaminated drinking water of Taluka Jati, Sindh, Pakistan and its adverse effects to local consumers. In order to attain this goal, total 35 water samples were collected randomly selected hand pumps and motor pumps of particular study area, in January 2017. The samples were analyzed and results were compared with the drinking water standards of the World Health Organization (WHO). The average arsenic contents found as (4.14g/L) in Mahdi Shah Farm, (15.34g/L) in Malhya Mori Stop, (12.74g/L) in Haji Qadir Bux Lodho, (3.34g/L) in Karim Dino Malhyo, (2.04g/L) in Haji Mir Muhammad Malhyo, (3.94g/L) in Mir Khan Stop, (7.74g/L) in Ibrahim Mandhro, (5.94g/L) in A. Qadir Malkani and (6.4g/L) was in Ghulam Shah Sim Nalo respectively. The arsenic mean ADI was also measured by standard method followed by reported formula. Safe arsenic daily intake in water was found as (0.66 g/day as (g/L). However, water samples of Malhya Mori Stop and Village Haji Qadir Bux. Lodho has maximum ADI of (0.828) and (0.682g/day) which shows that the people of these villages were at risk of various diseases such as skin lesions, black foot disease and various types of cancers etc. Physicochemical parameters of water samples of mentioned villages were also assessed that determines maximum values in villages Mahdi Shah Farm (Turbidity, Chlorides and Fluorides), Malhya Mori Stop (pH and Bicarbonate), Haji Qadir BuxLodho (opp), Karim Dino Malhyo (Alkalinity, Sulphate and Nitrate as N) and Ghulam Shah Sim Nalo (total hardness and electrical conductivity) as well.

Ahmad T, Kahlown, Tahir and Rashid M. 2004. Arsenic an emerging issue: experiences from Pakistan. in Proceedings of the 30th WEDC International Conference, pp. 459-466.

Arain, Kazi TG, Baig, Afridi H. 2009. Determination of arsenic levels in lake water, sediment and foodstuff from selected area of Sindh, Pakistan: estimation of daily dietary intake”. Food and Chem Toxic, 47, 1.

Aremu MO, Olaofe, Ikokoh O. 2011. Physicochemical characteristics of strem, well and borehole water soures in Eggon, Nasarawa State, Nigeria. Journal Chemical Society Nigeria 36, pp 131-136.

Chanpiwat P, Stiannopkao S, Kim K. 2010. Metal content variation in wastewater and biosuludge from Bangkok’s central wastewater treatment plants. Micro chemical Journal 95, 326-332.

Çöl, Soran, Sayli, B. 1999. Arsenic-related Bowen’s disease, palmar keratosis and skin cancer. Environmental Health Perspectives 107, pp. 687-689.

Ike, Ugodulunwa. 1999. History and philosophy of Science, pp 134-136.

Morales K, Ryan, Lkuo H. 2000. Risk of internal cancers from arsenic in drinking water. Environmental Health Perspectives, vol. 108, no. 7, pp. 655-661.

NAPAM. 2007. National Action Plan for Arsenic Mitigation, Pakistan Water and Sanitation Gateway, Ministry of Environment, Government of Pakistan.

Nickson RT, McArthur JM, Shrestha B. 2005. Arsenic and other drinking water quality issues, Muzaffargarh District, Pakistan. Applied Geochemistry. vol. 20, no. 1, pp. 55-68.

Rahman, MOwens and Naidu G. 2009. Arsenic levels in rice grain and assessment of daily dietary intake of arsenic from rice in arsenic-contaminated regions of Bangladesh implications to groundwater irrigation. Environmental Geochemistry and Health, vol. 31, no. 1, pp. 179-187.

Roychowdhury, T Uchino, Tokunaga T. 2002. Survey of arsenic in food composites from an arsenic-affected area of West Bengal, India. Food and Chemical Toxicology. vol. 40, no. 11, pp. 1611-1621.

Saqib AN, Waseem A. Khan AF. 2013. Arsenic bioremediation by low cost materials derived from Blue Pine Walnut. Ecological Engineering. vol. 51, pp. 88-94.

Sarkar and Datta R. 2004. Arsenic fate and bioavailability in two soils contaminated with sodium arsenate pesticide: an incubation study. Environmental Contamination and Toxicology. vol. 72, no. 2, pp. 240-247.

Smedley, Kinniburgh. 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, vol. 17, no. 5, pp. 517-568.

Storelli MA, Addabbo D. 2005. Trace elements in loggerhead turtle from eastern Mediterranean Sea, overview and evaluation. Environmental Pollution 135, 16-170.

WHO, 2011. Guidelines for Drinking-Water Quality, World Health Organisation, 4th edition.

Related Articles

Introduction of heavy metals contamination in the water: A review on source, toxicity and remediation methods

Khushaboo Soni, Preeti Maurya, Sanjay Singh, Int. J. Biosci. 27(1), 405-423, July 2025.

Groundnut (Arachis hypogaea L.) presents many similar responses to drought and salinity, two water stress factors

Mouniratou Zoungrana, Moumouni Konate, Jacob Sanou, Pauline Bationo Kando, Int. J. Biosci. 27(1), 386-404, July 2025.

Effects of pyroligneous acid of eggplant under different storage conditions

Amelita G. Alkuino, Int. J. Biosci. 27(1), 362-374, July 2025.

Antibacterial efficiency of panchagavya against pathogenic bacteria isolated from Oreochromis mossambicus

R. Keerthiga, M. Kannahi, Int. J. Biosci. 27(1), 355-361, July 2025.

Study on physico-morphological characteristics of Betel vine cv. Khasia pan genotypes grown in northeastern hilly region of Bangladesh

J. C. Sarker, F. Ahmed, M. H. M. B. Bhuyan, S. Debnath, S. M. L. Rahman, Int. J. Biosci. 27(1), 343-354, July 2025.

Plant growth promoting and biocontrol activity of Rhizobium meliloti against plant pathogens

R. Nithyatharani, S. Subashini, M. Vinoth, R. Krishnan, Int. J. Biosci. 27(1), 336-342, July 2025.

Effect of rhizobial inoculant in combination with vermicompost and molybdenum on soybean in pot condition

Sharmin Ara Jannat, Md. Azizul Haque, Saiyera Chowdhury, Alif Hossain, Int. J. Biosci. 27(1), 328-335, July 2025.