Review on stored grain insect pheromones

Paper Details

Review Paper 21/07/2023
Views (802) Download (61)
current_issue_feature_image
publication_file

Review on stored grain insect pheromones

Miguel Angel Martinez Gutierrez, Amanda Lima Cunha, Cesar Goncalves dos Santos, Joice Kessia Barbosa Dos Santos, Eliane Dos Santos, Jutahy Jorge Elias, Alex Béu Santos, Jessica Raimundo Da Rocha, Larissa Cavalcante Dos Santos, Demetrios José De Albuquerque Oliveira, Henrique Fonseca Goulart, Antônio Euzébio Goulart Santana
Int. J. Agron. Agri. Res.23( 1), 28-59, July 2023.
Certificate: IJAAR 2023 [Generate Certificate]

Abstract

Using pheromones to control and monitor stored grain pests is a technology applied in different countries. The present review identified the primary compounds used to prevent or monitor stored grain pests, their chemical structures, functional groups and attraction mechanisms. We discuss the aspects of historical evolution, the geographic distribution of research on stored grain pests, the methodological approaches used in developing this research, the strategies used to control and monitor these pests, and the chemical synthesis of the compounds used as pheromones. We found 109 published articles that reported data on pheromones. Aggregation and sexual pheromones were the most used for control and monitoring. The surveys were distributed across six continents; most studies were conducted in North America. Laboratory studies were the most common, followed by field studies. Management using pest monitoring was the most common. Different synthetic routes were observed when conducting the studies. These works showed the improvement of these synthetic routes to obtain pheromone constituents. This review highlighted the main aspects of using pheromones for controlling or monitoring stored grain pests.

VIEWS 174

Akasaka K, Tamogami S, Beeman RW, Mori K. 2011. Pheromone synthesis. Part 245: Synthesis and chromatographic analysis of the four stereoisomers of 4,8-dimethyldecanal, the male aggregation pheromone of the red flour beetle, Tribolium castaneum. Tetrahedron 67(1).

Arthur FH, Campbell JF, Toews MD. 2014. Distribution, abundance, and seasonal patterns of stored product beetles in a commercial food storage facility. Journal of Stored Products Research 56.

Ashworth JR. 1993. The biology of Lasioderma serricorne. Journal of Stored Products Research 29(4).

Athanassiou CG, Kavallieratos NG, Trematerra P. 2006. Responses of Sitophilus oryzae (Coleoptera: Curculionidae) and Tribolium confusum (Coleoptera: Tenebrionidae) to traps baited with pheromones and food volatiles. European Journal of Entomology 103(2). https://doi.org /10.14411/eje.2006.050

Awater-Salendo S, Schulz H, Hilker M, Fürstenau B. 2020. The Importance of Methyl-Branched Cuticular Hydrocarbons for Successful Host Recognition by the Larval Ectoparasitoid Holepyris sylvanidis. Journal of Chemical Ecology 46(11-12). https://doi.org/10.1007/s10886-020-01227-w

Badanyan SO, Makaryan GM, Ovanesyan AL, Panosyan GA. 2001. (2E)-4,4-dimethoxy-2-butenal in the synthesis of conjugated dienes and dienals. Russian Journal of Organic Chemistry 37(5). https://doi.org/10.1023/A:1012479213224

Bandara HMDS, Wijayaratne LKW, Egodawatta WCP, Morrison WR. 2021. Orientation of Tribolium castaneum (Coleoptera: Tenebrionidae) adults to 4,8-dimethyldecanal, kairomone and botanical oils following ambient, low, or high temperature exposure. Journal of Stored Products Research, 94, 101893. https://doi.org

Barak A V, Burkholder WE. 1985. A versatile and effective trap for detecting and monitoring stored-product coleoptera. Agriculture, Ecosystems & Environment 12(3). https://doi.org/https://doi.org

Barak AV, Burkholder WE, Faustini DL. 1990. Factors Affecting the Design of Traps for Stored-Product Insects. Journal of the Kansas Entomological Society 63(4), 466-485.

Birkinshaw LA, Hodges RJ, Addo S. 2004. Flight behaviour of Prostephanus truncatus and Teretrius nigrescens demonstrated by a cheap and simple pheromone-baited trap designed to segregate catches with time. Journal of Stored Products Research 40(2). https://doi.org/10.1016/S0022-474X(02)00094-2

Bloch Qazi MC, Boake CRB, Lewis SM. 1998. The femoral setiferous glands of Tribolium castaneum males and production of the pheromone 4,8-dimethyldecanal. Entomologia Experimentalis et Applicata, 89(3). https://doi.org/10.1046/j.1570-7458.1998.00414.x

Boake CR. 1985. Genetic consequences of mate choice: a quantitative genetic method for testing sexual selection theory. Science (New York, N.Y.) 227(4690). https://doi.org/10.1126/science.227.46

Buckman KA, Campbell JF. 2013. How varying pest and trap densities affect Tribolium castaneum capture in pheromone traps. Entomologia Experimentalis et Applicata 146(3). https://doi.org/ 10.1111/eea.12039

Burkholder WE, Boush GM. 1974. Pheromones in Stored Product Insect Trapping and Pathogen Dissemination. EPPO Bulletin 4(4). https://doi.org/ 10.1111/j.1365-2338.1974.tb02393.x

Butenandt A, Beckmann R, Hecker E. 1961. Über den Sexuallockstoff des Seidenspinners, I: Der biologische Test und die Isolierung des reinen Sexuallockstoffes Bombykol. Hoppe-Seyler’s Zeitschrift Fur Physiologische Chemie 324(1). https://doi.org/10.1515/bchm2.1961.324.1.71

Campbell JF, Arbogast RT. 2004. Stored-product insects in a flour mill: Population dynamics and response to fumigation treatments. Entomologia Experimentalis et Applicata 112(3).

Campbell JF, Mullen MA, Dowdy AK. 2002. Monitoring stored product pests in food processing plants with pheromone trapping, contour mapping, and mark recapture. Journal of Economic Entomology, 95(5). https://doi.org/10.1603/0022-0

Campbell JF, Mullen MA. 2004 Distribution and dispersal behavior of Trogoderma variabile and Plodia interpunctella outside a food processing plant. Journal of Economic Entomology 97(4).

Campbell JF. 2012. Attraction of walking Tribolium castaneum adults to traps. Journal of Stored Products Research 51. https://doi.org/10.1016 /j.jspr.2012.

Campbell JF. 2013. Influence of landscape pattern in flour residue amount and distribution on Tribolium castaneum (Herbst) response to traps baited with pheromone and kairomone. Journal of Stored Products Research 52. https://doi.org/

Campos M, Phillips TW. 2013. Laboratory evaluation of attract-and-kill formulations against the Indianmeal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Journal of Stored Products Research 52. https://doi.org/10.1016/j.jspr.

Campos M, Phillips TW. 2014. Attract-and-kill and other pheromone-based methods to suppress populations of the Indianmeal moth (Lepidoptera: Pyralidae). Journal of Economic Entomology 107(1). https://doi.org/10.1603/EC13451

Carvalho MO, Faro A, Subramanyam B. 2013. Insect population distribution and density estimates in a large rice mill in Portugal – A pilot study. Journal of Stored Products Research 52.

Castañé C, Agustí N, Estal P del, Riudavets J. 2020. Survey of Trogoderma spp. in Spanish mills and warehouses. Journal of Stored Products Research 88. https://doi.org/10.1016/j.jspr.2020.101661

Chambers J, Morgan CP, White PR, Mori K, Finnegan DE, Pinniger DB. 1990. Rust-red grain beetle,Cryptolestes ferrugineus, and flat grain beetle,Cryptolestes pusillus: Antennal and behavioral responses to synthetic components of their aggregation pheromones. Journal of Chemical Ecology 16(12). https://doi.org/10.1007/ BF00

Chambers J, Van Wyk CB, White PR, Gerrard CM, Mori K. 1996. Grain weevil,Sitophilus granarius (L.): Antennal and behavioral responses to male-produced volatiles. Journal of Chemical Ecology 22(9). https://doi.org/10.1007/BF02272404

Cheskis BA, Lebedeva KV, Moiseenkov AM. 1988. Effective synthesis of (4R,8R)- and (4R,8S)-enantiomers of 4,8-dimethyldecanal, the aggregation pheromone of the beatles Tribolium confusum and Tribolium castaneum. Institute of Organic Chemistry 4, 865-871.

Cheskis BA, Moiseenkov AM, Shpiro NA, Stashina GA, Zhulin VM. 1990a. Stereochemically controlled synthesis of racemic sitophilate, the aggregational pheromone of the grain weevil. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science 39(4). https://doi.org/10.1007 /BF00960333

Cheskis BA, Shpiro NA, Moiseenkov AM. 1990b. Synthesis of ferrulactone I and its dimer. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science 38(11). https://doi.org/10.1007/BF01168095

Cheskis BA, Shpiro NA, Moiseenkov AM. 1993. Effective synthesis of femrrulactone II based on the use of 2-carhoxyethyltriphenylphosphonium bromide. Russian Chemical Bulletin 42(4). https://doi.org/10.1007/BF00704022

Chiluwal K, Kim J, Bae S Do, Maharjan R, Park CG. 2017. Attractiveness of male azuki bean beetle to the synthetic blends of 2E- and 2Z-homofarnesals. Journal of Asia-Pacific Entomology 20(4). https://doi.org/10.1016/j.aspen.2017.09.003

Chiluwal K, Kim J, Bae S Do, Roh GH, Park CG. 2018. Methyl salicylate and trans-anethole affect the pheromonal activity of homofarnesal, the female sex pheromone of azuki bean beetle. Entomological Research 48(5). https://doi.org/10.1111/1748-

Collins LE, Bryning GP, Wakefield ME, Chambers J, Cox PD. 2007. Progress towards a multi-species lure: Identification of components of food volatiles as attractants for three storage beetles. Journal of Stored Products Research 43(1). https://doi.org /10.1016/j.jspr.2005.10.001

CONAB CNDA. 2021. Perdas em transporte e armazenagem de grãos: panorama atual e perspectivas (P. C. MACHADO JÚNIOR & S. A. dos. Reis Neto (eds.)). http://www.conab.gov.br

Contini E, Mota MM, Marra R, Borghi E, Miranda RA de, Silva AF da, Silva DD da, Machado JR de A, Cota LV, Costa RV da, Mendes SM. 2019. Milho-Caracterização e Desafios Tecnológicos. Embrapa 5(1), 1-45.

Cork A, Hall DR, Hodges RJ, Pickett JA. 1991. Identification of major component of male-produced aggregation pheromone of larger grain borer, Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae). Journal of Chemical Ecology 17(4).

Czeskis BA, Shpiro NA, Moiseenkovt AM. 1993. Efficient Synthesis of (S,Z)-Dodec-3-en-11 -olide (Ferrulactone II) using 2-Carboxyethyltriphenylphosphonium Bromide. Mendeleev Communications 3(3). https://doi.org /10.1070/MC1993v003n03ABEH000239

Daglish GJ, Ridley AW, Reid R, Walter GH. 2017. Testing the consistency of spatio-temporal patterns of flight activity in the stored grain beetles Tribolium castaneum (Herbst) and Rhyzopertha dominica (F.). Journal of Stored Products Research 72. https://doi.org/10.1016/j.jspr.2017.03.005

de Souza VN, de Oliveira CRF, Matos CHC, de Almeida DKF. 2016. Fumigation toxicity of essential oils against Rhyzopertha dominica (F.) in stored maize grain. Revista Caatinga 29(2). https://doi.org/10.1590/1983-21252016v29n220rc

Dissanayaka DMSK, Sammani AMP, Wijayaratne LKW, Bamunuarachchige TC, Morrison WR. 2020c. Distance and height of attraction by walking and flying beetles to traps with simultaneous use of the aggregation pheromones from Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) and Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae). Journal of Stored Products Research 89.

Dissanayaka DMSK, Sammani AMP, Wijayaratne LKW, Rajapakse RHS, Hettiarachchi S, Morrison WR. 2020d. Effects of aggregation pheromone concentration and distance on the trapping of Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) adults. Journal of Stored Products Research 88. https://doi.org/ 10.1016/j.jspr.2020.101657

Dissanayaka DMSK, Sammani AMP, Wijayaratne LKW. 2018a. Food oils as kairomones for trapping Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) adults. Journal of Stored Products Research 79. https://doi.org /10.1016 /j.jspr.2018.09.005

Dissanayaka DMSK, Sammani AMP, Wijayaratne LKW. 2018b. Aggregation pheromone 4,8-dimethyldecanal and kairomone affect the orientation of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) adults. Journal of Stored Products Research 79. https://doi.org /10.1016 /j.jspr.2018.07.005

Dissanayaka DMSK, Sammani AMP, Wijayaratne LKW. 2020a. Orientation of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) adults at various distances to different concentrations of aggregation pheromone 4,8-dimethyldecanal. Journal of Stored Products Research 87. https://doi.org/10.1016/j.jspr. 2020.

Dissanayaka DMSK, Sammani AMP, Wijayaratne LKW. 2020b. Response of different population sizes to traps and effect of spinosad on the trap catch and progeny adult emergence in Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of Stored Products Research 86. https://doi.org/10.1016/j.jspr.2020.101576

Doud CW, Cuperus GW, Kenkel P, Payton ME, Phillips TW. 2021. Trapping Tribolium castaneum (Coleoptera: Tenebrionidae) and other beetles in flourmills: Evaluating fumigation efficacy and estimating population density. Insects 12(2). https://doi.org/10.3390/insects12020144

Dowdy AK, Howard RW, Seitz LM, McGaughey WH. 1993. Response of Rhyzopertha dominica (Coleoptera, Bostrichidae) to its aggregation pheromone and wheat volatiles. Environmental Entomology, 22(5). https://doi.org /10.1093 /ee/22.5.965

Dowdy AK, Mullen MA. 1998. Multiple store-product insect pheromone use in pitfall traps. Journal of Stored Products Research 34(1). https://doi.org /10.1016/S0022-474X(97)00018-0

Dowell FE, Dowell CN. 2017. Reducing grain storage losses in developing countries. Quality Assurance and Safety of Crops and Foods 9(1). https://doi.org/10.3920/QAS2016.0897

Duehl AJ, Arbogast RT, Teal PE. 2011. Age and sex related responsiveness of Tribolium castaneum (Coleoptera: Tenebrionidae) in novel behavioral bioassays. Environmental Entomology 40(1). https://doi.org/10.1603/EN10107

Edde PA, Phillips TW, Nansen C, Payton ME. 2006. Flight activity of the lesser grain borer, Rhyzopertha dominica F. (Coleoptera: Bostrichidae), in relation to weather. Environmental Entomology 35(3). https://doi.org/10.1603/0046-225X-35.3.616

Edde PA, Phillips TW, Toews MD. 2005. Responses of Rhyzopertha dominica (Coleoptera: Bostrichidae) to its aggregation pheromones as influenced by trap design, trap height, and habitat. Environmental Entomology 34(6). https://doi.org /10.1603/0046-225X-34.6.1549

Eiras AE, Mafra-Neto A. 2001. Olfatometria aplicada ao estudo do comportamento de insetos. Feromônios de Insetos: Biologia, Química e Emprego No Manejo de Pragas. Ribeirão Preto, Editora Holos 206p, 27-39.

El-Sayed AM, Suckling DM, Wearing CH, Byers JA. 2006. Potential of mass trapping for long-term pest management and eradication of invasive species. In Journal of Economic Entomology 99(5). https://doi.org/10.1093/jee/99.5.1550

EMBRAPA. 2021. Brazilian Agricultura Research Corporation Origin and History of Soy in Brazil. Embrapa Soy. https://www.embrapa.br/en/ soja

Fadamiro HY, Gudrups I, Hodges RJ. 1998. Upwind flight of Prostephanus truncatus is mediated by aggregation pheromone but not food volatiles. Journal of Stored Products Research 34(23). https://doi.org/10.1016/S0022-474X(97)00044-1

Fadamiro HY, Wyatt TD. 1996. Factors influencing response of flying Prostephanus truncatus to its male-produced aggregation pheromone. Physiological Entomology 21(3). https://doi.org/10.1111/j.1365-3032.1996.tb00853.x

FAO. 2021. FAOSTAT. http://www.fao.org/faostat /en /#data/QC

Fardisi M, Mason LJ. 2013. Influence of lure (food/sex pheromone) on young mated cigarette beetle (Lasioderma serricorne (F.)) (Coleoptera: Anobiidae) flight initiation. Journal of Stored Products Research 53.

Fargo WS, Cuperus GW, Bonjour EL, Burkholder WE, Clary BL, Payton ME. 1994. Influence of probe trap type and attractants on the capture of four stored-grain Coleoptera. Journal of Stored Products Research 30(3).

Faustini DL, Burkholder WE, Laub RJ. 1981. Sexually dimorphic setiferous sex patch in the male red flour beetle,Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae): Site of aggregation pheromone production. Journal of Chemical Ecology 7(2). https://doi.org/10.1007/BF00995769

Faustini DL. 1982. Male-porduced aggregation pheromone of the maize weevil. Ecology 9(7), 831-841.

Fedina TY, Lewis SM. 2007. Effect of Tribolium castaneum (Coleoptera: Tenebrionidae) nutritional environment, sex, and mating status on response to commercial pheromone traps. Journal of Economic Entomology 100(6). https://doi.org/10.1603/0022-0493(2007)100[1924:eotcct]2.0.co;2

Franck-Neumann M, Martina D, Neff D. 1998. Amplification of chirality by transition metal coordination: Synthesis of chiral allenes and allene manganese complexes of high enantiomeric purity. Synthesis of methyl (R,E)-(-)-(2,4,5-tetradecatrienoate (pheromone of Acanthoscelides obtectus (say)). Tetrahedron Asymmetry 9(4). https://doi.org/10.1016/S0957-4166(98)00023-8

Fuganti C, Grasselli P, Servi S, Högberg HE. 1988. Bakers’ yeast mediated preparation of (S)-3-(2-furyl)-2-methylpropan-1-ol, a bifunctional chiral C5 isoprenoid synthon: Synthesis of (4R,8R)-4,8-dimethyldecanal, a pheromone of Tribolium castaneum. Journal of the Chemical Society, Perkin Transactions 1, 12. https://doi.org/10.1039

Gerken AR, Scully ED, Campbell JF. 2018. Red Flour Beetle (Coleoptera: Tenebrionidae) Response to Volatile Cues Varies With Strain and Behavioral Assay. Environmental Entomology 47(5).

Hagstrum DW, Phillips TW, Cuperus G. 2012. Stored Product Protection. Kansas State University. K-State Research and Extension.

Hagstrum DW, Phillips TW. 2017. Evolution of Stored-Product Entomology: Protecting the World Food Supply. In Annual Review of Entomology 62. https://doi.org/10.1146/annurev-ento-031616-

Hagstrum DW, Subramanyam B. 2006. Fundamentals of stored-product entomology. In D. W. Hagstrum & B. B. T.-F. of S.-P. E. Subramanyam (Eds.), American Associate of Cereal Chemists International. pp. 3-22. AACC International Press. https://doi.org/https://doi.org/10.1016/B978-1-

Hagstrum DW, Subramanyam B. 2009. Stored-Product Insect Resource. In Stored-Product Insect Resource. https://doi.org/10.1111/j.1365-2621.2010.

Hawkin KJ, Stanbridge DM, Fields PG. 2011. Sampling Tribolium confusum and Tribolium castaneum in mill and laboratory settings: Differences between strains and species. Canadian Entomologist 143(5). https://doi.org/10.4039/n11-

Hodges RJ, Hall DR, Golob P, Meik J. 1983. Responses of Prostephanus truncatus to components of the aggregation pheromone of Rhyzopertha dominica in the laboratory and field. Entomologia Experimentalis et Applicata 34(3). https://doi.org /10.1111/j.1570-7458.1983.tb03332.x

Hodges RJ, Hall DR, Mbugua JN, Likhayo PW. 1998. The responses of Prostephanus truncatus (Coleoptera: Bostrichidae) and Sitophilus zeamais (Coleoptera: Curculionidae) to pheromone and synthetic maize volatiles as lures in crevice or flight traps. Bulletin of Entomological Research 88(2). https://doi.org/10.1017/s0007485300025700

Holloway JC, Mayer DG, Daglish GJ. 2018. Flight activity of Cryptolestes ferrugineus in southern New South Wales, Australia. Journal of Pest Science 91(4). https://doi.org/10.1007/s10340-018-0981-1

Hötling S, Bittner C, Tamm M, Dähn S, Collatz J, Steidle JLM, Schulz S. 2015. Identification of a Grain Beetle Macrolide Pheromone and Its Synthesis by Ring-Closing Metathesis Using a Terminal Alkyne. Organic Letters 17(20). https://doi.org/10.1021 /acs.orglett.5b02461

Hötling S, Haberlag B, Tamm M, Collatz J, Mack P, Steidle JLM, Vences M, Schulz S. 2014. Identification and synthesis of macrolide pheromones of the grain beetle Oryzaephilus surinamensis and the frog Spinomantis aglavei. Chemistry (Weinheim an Der Bergstrasse, Germany) 20(11). https://doi.org/10.1002/chem.201304414

Ismuratov GY, Yakovleva MP, Galyautdinova AV, Tolstikov GA. 2003. Synthesis of (4R)-methylnonan-1-oL and (4R,8RS)-dimethyldecanal from (S)-(+)-3,7-dimethyl-1,6-octadiene. Chemistry of Natural Compounds 39(1).

Jha SN, Vishwakarma RK, Ahmad T, Rai A. 2015. Report on Assessment of Quantitative Harvest and Post-Harvest Losses of Major Crops/ Commodities in India Sponsor . Ministry of Food Processing Industries. https://doi.org/10.13140

Jittanun C, Chongrattanameteekul W. 2014. Phosphine resistance in Thai local strains of Tribolium castaneum (Herbst) and their response to synthetic pheromone. Kasetsart Journal-Natural Science, 48(1).

Kalaitzakis D, Kambourakis S, Rozzell DJ, Smonou I. 2007. Stereoselective chemoenzymatic synthesis of sitophilate: a natural pheromone. Tetrahedron Asymmetry 18(20). https://doi.org /10.1016 /j.tetasy.2007.10.008

Kalaitzakis D, Rozzell JD, Kambourakis S, Smonou I. 2006. A two-step chemoenzymatic synthesis of the natural pheromone (+)-sitophilure utilizing isolated, NADPH-dependent ketoreductases. European Journal of Organic Chemistry 10. https://doi.org/10.1002/ejoc.200500991

Kameda Y, Nagano H. 2006. Radical mediated stereoselective synthesis of (4R,8R)-4,8-dimethyldecanal, an aggregation pheromone of Tribolium flour beetles. Tetrahedron 62(41). https://doi.org/10.1016/j.tet.2006.07.054

Keinan E, Sinha SC, Singh SP. 1991. Thermostable enzymes in organic synthesis, 5. Total synthesis of S-(+)-Z-dodec-3-en-11-olide (ferrulactone II) using a tbadh-generated bifunctional chiron. Tetrahedron, 47(26). https://doi.org/10.1016 /S0040-4020(01)86469-3

Konemann CE, Hubhachen Z, Opit GP, Gautam S, Bajracharya NS. 2017. Phosphine Resistance in Cryptolestes ferrugineus (Coleoptera: Laemophloeidae) Collected From Grain Storage Facilities in Oklahoma, USA. Journal of Economic Entomology 110(3). https://doi.org/10.1093

Kukovinets OS, Odinokov VN, Tsyglintseva EY, Tolstikov GA. 1996. Pheromones of insects and their analogs. LIII. Synthesis of ferrulactone I -a pheromone of Cryptolestes ferrugineus. Chemistry of Natural Compounds 32(6). https://doi.org/10.1007 /BF01374028

Kumari JWP, Wijayaratne LKW, Jayawardena NWIA, Egodawatta WCP. 2020. Quantitative and Qualitative Losses in Paddy, Maize and Greengram Stored under Household Conditions in Anuradhapura District of Sri Lanka. Sri Lankan Journal of Agriculture and Ecosystems 2(1), 99. https://doi.org/10.4038/sljae.v2i1.32

Larson Z, Subramanyam B, Herrman T. 2008. Stored-product insects associated with eight feed mills in the midwestern United States. Journal of Economic Entomology 101(3). https://doi.org /10.1603/0022-0493(2008)101[998:siawef]2.0.co;2

Likhayo PW, Hodges RJ. 2000. Field monitoring Sitophilus zeamais and Sitophilus oryzae (Coleoptera: Curculionidae) using refuge and flight traps baited with synthetic pheromone and cracked wheat. Journal of Stored Products Research 36(4). https://doi.org/10.1016/s0022-474x(99)00052-1

Lindgren BS, Borden JH, Pierce AM, Pierce HD, Oehlschlager AC, Wong JW. 1985. A potential method for simultaneous, semiochemical-based monitoring of Cryptolestes ferrugineus and Tribolium castaneum (Coleoptera: Cucujidae and Tenebrionidae). Journal of Stored Products Research 21(2). https://doi.org/10.1016/0022-474X(85)

Lorini I, Krzyzanowski FC, França-Neto J de B, Henning AA, Henning FA. 2015. Manejo Integrado de Pragas de Grãos e Sementes Armazenadas. In Empresa Brasileira de Pesquisa Agropecuária.

Lorini I. 2015. Perdas anuais em grãos armazenados chegam a 10% da produção nacional. Visão Agrícola 13.

Loschiaho SR, White NDG, Wong J, Pierce HD, Oehlschlager AC, Borden JH. 1986) Field evaluation of a pheromone to detect adult rusty grain beetles, Cryptolestes ferrugineus (Coleoptera: Cucujidae), in stored grain. The Canadian Entomologist 118(1). https://doi.org/10.4039/

Losey SM, Daglish GJ, Phillips TW. 2019. Orientation of rusty grain beetles, Cryptolestes ferrugineus (Coleoptera: Laemophloeidae), to semiochemicals in field and laboratory experiments. Journal of Stored Products Research 84. https://doi.org/10.1016/j.jspr.2019.101513

Mahroof RM, Edde PA, Robertson B, Puckette JA, Phillips TW. 2010. Dispersal of Rhyzopertha dominica (Coleoptera: Bostrichidae) in different habitats. Environmental Entomology 39(3). https://doi.org/10.1603/EN09243

Mavrov MV, Serebryakov EP. 1993. Pheromones of Coleoptera .13. Synthesis of racemic ferrulactone II from three easily accessible acetylenic precursors. Russian Chemical Bulletin 42(12), 2035-2038.

McKay T, Bowombe-Toko MP, Starkus LA, Arthur FH, Campbell JF. 2019. Monitoring of Tribolium castaneum (Coleoptera: Tenebrionidae) in Rice Mills using Pheromone-Baited Traps. Journal of Economic Entomology 112(3).

McKay T, White AL, Starkus LA, Arthur FH, Campbell JF. 2017. Seasonal Patterns of Stored-Product Insects at a Rice Mill. Journal of Economic Entomology 110(3). https://doi.org/10.1093/jee

Melikyan GG, Mkrtchyan VM, Atanesyan KA, Azaryan GK, Badanyan SO. 1990. Low-molecular-mass bioregulators. II. Synthesis of methyl (±)-tetradeca-2E,4,5-trienoate – The sex pheromone of Acanthoscelides obtectus. Chemistry of Natural Compounds 26(1). https://doi.org/10.1007/

Moreira MAB, Zarbin PHG, Coracini MDA. 2005. Feromônios associados aos coleópteros-praga de produtos armazenados. Química Nova 28(3).

Mori K, Kato M, Kuwahara S. 1985. Pheromone syntheses, LXXIII. New synthesis of (4R,8R)‐4,8‐dimethyldecanal, the aggregation pheromone of Tribolium castaneum, and its (4R,8S)‐isomer. Liebigs Annalen Der Chemie 1985(4).

Mori K, Kuwahara S, Ueda H. 1983. Synthesis of all of the four possible stereoisomers of 4,8-dimethyldecanal, the aggregation pheromone of the flour beetles. Tetrahedron 39(14). https://doi.org /10.1016/S0040-4020(01)91971-4

Mori K, Nukada T, Ebata T. 1981. Synthesis of optically active forms of methyl (E)-2,4,5-tetradecatrienoate, the pheromone of the male dried bean beetle. Tetrahedron 37(7). https://doi.org/ 10.1016/S0040-4020(01)92450-0

Mori K, Takikawa H. 1991. Synthesis of (4S,8S)- and (4S,SR)-4,8-Dimethyldecanal, the Stereoisomers of the Aggregation Pheromone of Tribolium castaneum. European Journal of Organic Chemistry (5), 497-500.

Mori K, Yoshimura T, Sugai T. 1988. Pheromone synthesis, CX. Synthesis of (4S,5R)‐5‐hydroxy‐4‐methyl‐3‐heptanone (Sitophilure), the aggregation pheromone of Sitophilus oryzae and S. zeamais. Liebigs Annalen Der Chemie (9). https://doi.org/ 10.1002/jlac.198819880914

Mori K. 2012. Pheromone synthesis. Part 249: Syntheses of methyl (R,E)-2,4,5- tetradecatrienoate and methyl (2E,4Z)-2,4-decadienoate, the pheromone components of the male dried bean beetle, Acanthoscelides obtectus (Say). Tetrahedron 68(7). https://doi.org/10.1016/j.tet.2011.12.064

Morrison WR, Grosdidier RF, Arthur FH, Myers SW, Domingue MJ. 2020. Attraction, arrestment, and preference by immature Trogoderma variabile and Trogoderma granarium to food and pheromonal stimuli. Journal of Pest Science 93(1). https://doi.org/10.1007/s10340-019-01171-z

Muatinte BL, Santos LA, Van Den Berg J. 2018. The Use of Mass Trapping to Suppress Population Numbers of Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) in Small-Scale Farmer Granaries in Mozambique. African Entomology 26(2). https://doi.org/10.4001/003.026.0301

Mudiyanselage A, Sammani P, Mudiyanselage D, Kumara S, Kanaka L, Wijayaratne W, Robert W, Iii M. 2020. Effect of Pheromone Blend Components , Sex Ratio , and Population Size on the Mating of Cadra cautella (Lepidoptera : Pyralidae). 20. https://doi.org/10.1093/jisesa/ieaa128

Mullen MA, Dowdy AK. 2001. A pheromone-baited trap for monitoring the Indian meal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Journal of Stored Products Research 37(3). https://doi.org/10.1016/s0022-474x(00)00

Obeng-Ofori D, Coaker TH. 1990a. Tribolium aggregation pheromone: monitoring, range of attraction and orientation behaviour of T. castaneum (Coleoptera: Tenebrionidae). Bulletin of Entomological Research 80(4). https://doi.org/ 10.1017/S0007485300050707

Obeng-Ofori D, Coaker TH. 1990b. Some factors affecting responses of four stored product beetles (Coleoptera: Tenebrionidae & Bostrichidae) to pheromones. Bulletin of Entomological Research 80(4). https://doi.org/10.1017/S00074853000500

Odinokov VN, Dzhemilev UM, Ishumuratov GY, Botsman LP, Ibragimov AG, Ladenkova IM, Kargapol’teva TA, Zolotarev AP, Tolstikov GA. 1991. Pheromones of insects and their analogs. XXVIII. Practical synthesis of tetradeca-9Z,12E-dien-1-yl acetate – A component of the sex pheromones of insects of the order lepidoptera. Chemistry of Natural Compounds 27(2). https://doi.org/10.1007/ BF00629770

Odinokov VN, Ishmuratov GY, Botsman LP, Vakhidov RR, Khametova RR, Ladenkova IM, Tolstikov GA. 1992. Insect pheromones and their analogues XXXIX. Synthesis of 11RS-hydroxy- and 12-hydroxydodec-3Z-enoic acids — Acyclic precursors of the macrolide components of the pheromones of Cryptolestes ferrugineus and C. pusillus. Institute of Organic Chemistry 28(3-4). https://doi.org /10.1007/bf00630260

Odinokov VN, Ishmuratov GY, Botsman LP, Vakhidov RR, Ladenkova IM, Kargapol’tseva TA, Tolstikov GA. 1992. Insect pheromones and their analogues XL. Synthesis of dodec-3Z-EN-11RS-olide (ferrulactone II – A racemic analogue of a component of the aggregation pheromone of Cryptolestes ferrugineus. Chemistry of Natural Compounds 28(3-4). https://doi.org/10.1007

Odinokov VN, Izhmuratov GY, Kharisov RY, Ibragimov AG, Sultanov RM, Dzhemilev UM, Tolstikov GA. 1989. Pheromones of insects and their analogs. XX. Methyl-branched pheromones based on 4-methyltetrahydropyran. – I. Synthesis of racemic 4,8-dimethyldecanal – The pheromone of the flour beetles Tribolium confusum and Tribolium castaneum. Chemistry of Natural Compounds 25(2). https://doi.org/10.1007/BF00598420

Oehlschlager AC, Wong JW, Verigin VG, Pierce HD. 1983. Synthesis of Two Macrolide Pheromones of the Rusty Grain Beetle, Cryptolestes ferrugineus (Stephens)1. Journal of Organic Chemistry 48(25). https://doi.org/10.1021/ jo00173

Ogasawara M, Nagano T, Hayashi T. 2005. A new route to methyl (R,E)-(-)-tetradeca-2,4,5-trienoate (pheromone of Acanthoscelides obtectus) utilizing a palladium-catalyzed asymmetric allene formation reaction. The Journal of Organic Chemistry 70(14), 5764-5767. https://doi.org/10.1021/jo0506z

Oliveira CM, Auad AM, Mendes SM, Frizzas MR. 2014. Crop losses and the economic impact of insect pests on Brazilian agriculture. Crop Protection 56. https://doi.org/10.1016/j.cropro.2013.10.022

Omondi BA, Jiang N, van den Berg J, Schulthess F. 2011. The flight activity of Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) and Teretrius nigrescens Lewis (Coleoptera: Histeridae) in Kenya. Journal of Stored Products Research 47(1). https://doi.org/ 10.1016 /j.jspr.2010.08.002

Palipane KB. 2000. Current storage practices and quality improvement of stored grains. Proceedings of the Seminar.

Perez LM, Moore PJ, Abney MR, Toews MD. 2020. Species Composition, Temporal Abundance and Distribution of Insect Captures Inside and Outside Commercial Peanut Shelling Facilities. Insects 11(2). https://doi.org/10.3390/insects0110

Phillips TW, Doud CW. 2020. Responses of Red Flour Beetle Adults, Tribolium castaneum (Coleoptera: Tenebrionidae), and Other Stored Product Beetles to Different Pheromone Trap Designs. Insects 11(11). https://doi.org/10.3390ect3

Phillips TW, Jiang XL, Burkholder WE, Phillips JK, Tran HQ. 1993. Behavioral responses to food volatiles by two species of stored-product coleoptera, Sitophilus oryzae (curculionidae) and Tribolium castaneum (tenebrionidae). Journal of Chemical Ecology 19(4). https://doi.org/10.1007

Phillips TW, Throne JE. 2010. Biorational approaches to managing stored-product insects. In Annual Review of Entomology 55. https://doi.org /10.1146/annurev.ento.54.110807.090451

Pierce AM, Pierce HD, Borden JH, Oehlschlager AC. 1989. Production Dynamics of Cucujolide Pheromones and Identification of 1-Octen-3-ol as a New Aggregation Pheromone for Oryzaephilus surinamensis and O. mercator (Coleoptera: Cucujidae). Environmental Entomology 18(5). https://doi.org/10.1093/ee/18.5.747

Pierce AM, Pierce HD, Oehlschlager AC, Czyzewska E, Borden JH. 1987. Influence of pheromone chirality on response by Oryzaephilus surinamensis and Oryzaephilus mercator (Coleoptera: Cucujidae). Journal of Chemical Ecology 13(6). https://doi.org/10.1007/BF01012295

Pierce AM, Pierce HDJ, Borden JH, Oehlschlager AC. 1991a. Fungal volatiles: Semiochemicals for stored-product beetles (Coleoptera: Cucujidae). Journal of Chemical Ecology, 17(3).

Pierce AM, Pierce HDJ, Oehlschlager AC, Borden JH. 1991b. 1-Octen-3-ol, attractive semiochemical for foreign grain beetle, Ahasverus advena (Waltl) (Coleoptera: Cucujidae). Journal of Chemical Ecology 17(3). https://doi.org/10.1007 /BF00982127

Pilli RA, Riatto VB. 1999. The Asymmetric Synthesis of (+)-Sitophilure, the Natural Form of the Aggregation Pheromone of Sitophilus oryzae L. and Sitophilus zeamais M. Journal of the Brazilian Chemical Society 10(5). https://doi.org/10.1590 /S0103-50531999000500005

Pimentel D. 1991. World resources and food losses to pests. In Ecology and Management of Food-Industry. Pests See Ref 37, 5-11.

Rajan TS, Muralitharan V, Daglish GJ, Mohankumar S, Rafter MA, Chandrasekaran S, Mohan S, Vimal D, Srivastava C, Loganathan M, Walter GH. 2018. Flight of three major insect pests of stored grain in the monsoonal tropics of India, by latitude, season and habitat. Journal of Stored Products Research 76. https://doi.org/10.1016/j.jspr.2017.12.005

RamírezMartínez M, de AlbaAvila A, RamírezZurbía R. 1994. Discovery of the larger grain borer in a tropical deciduous forest in Mexico. Journal of Applied Entomology 118(1-5). https://doi.org/10.1111/j.1439-0418.1994.tb00811.x

Ravía SP, Risso M, Kröger S, Vero S, Seoane GA, Gamenara D. 2013. A concise and stereoselective chemoenzymatic synthesis of Sitophilate, the male-produced aggregation pheromone of Sitophilus granarius (L.). Tetrahedron Asymmetry 24(19). https://doi.org/10.1016/j.tetasy.

Ridley AW, Hereward JP, Daglish GJ, Raghu S, McCulloch GA, Walter GH. 2016. Flight of Rhyzopertha Dominica (Coleoptera: Bostrichidae) A spatio temporal analysis with pheromone trapping and population genetics. Journal of Economic Entomology 109(6). https://doi.org/10.1093

Sajeewani PAH, Dissanayaka DMSK, Wijayaratne LKW, Burks CS. 2020. Changes in Shape, Texture and Airflow Improve Efficiency of Monitoring Traps for Tribolium castaneum (Coleoptera: Tenebrionidae). Insects 11(11). https://doi.org/10.3390/insects11110778

Sakai T, Mori K. 1986. New synthesis of the macrolide pheromones of the rusty grain beetle, Cryptolestes ferrugineus stephens. Agricultural and Biological Chemistry 50(1). https://doi.org/10.1080 /00021369.1986.10867329

Sakhautdinov IM, Gumerov AM, Mukhamet’yanova AF, Atangulov AB, Yunusov MS. 2018. New Synthetic Method for the Racemic form of the Bean Weevil Acanthoscelides obtectus Male Pheromone. Chemistry of Natural Compounds 54(3). https://doi.org/10.1007/s10600-018-2429-5

Sambaraju KR, Phillips TW. 2008. Responses of adult Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) to light and combinations of attractants and light. Journal of Insect Behavior 21(5). https://doi.org/10.1007/s10905-008-9140-5

Sammani AMP, Dissanayaka DMSK, Wijayaratne LKW, Bamunuarachchige TC, Morrison WR 3rd. 2020a. Effect of Pheromones, Plant Volatiles and Spinosad on Mating, Male Attraction and Burrowing of Cadra cautella (Walk.) (Lepidoptera: Pyralidae). Insects 11(12). https://doi.org/10.3390/insects11120845

Sammani AMP, Dissanayaka DMSK, Wijayaratne LKW, Morrison WR. 2020b. Effects of spinosad and spinetoram on larval mortality, adult emergence, progeny production and mating in Cadra cautella (Walk.) (Lepidoptera: Pyralidae). Journal of Stored Products Research 88, 101665. https://doi.org/10.1016/j.jspr.2020.101665

Santangelo EM, Corrêa AG, Zarbin PHG. 2006. Synthesis of (4R,8R)- and (4S,8R)-4,8-dimethyldecanal: the common aggregation pheromone of flour beetles. Tetrahedron Letters 47(29). https://doi.org/10.1016/j.tetlet.2006.05.066

Satoh T, Hanaki N, Kuramochi Y, Inoue Y, Hosoya K, Sakai K. 2002. A new method for synthesis of allenes, including an optically active form, from aldehydes and alkenyl aryl sulfoxides by sulfoxide-metal exchange as the key reaction and an application to a total synthesis of male bean weevil sex attractant. Tetrahedron 58(13). https://doi.org /10.1016/S0040-4020(02)00151-5

Selitskaya OG, Shamshev IV. 1995. Response of Rhyzopertha dominica (Coleoptera, Bostrichidae) to the components of aggregation pheromone. Entomological Review 74(7).

Shakhmaev RN, Sunagatullina AS, Akimova DA, Zorin VV. 2017. Fe-catalyzed synthesis of methyl-(2E,4Z)-deca-2,4-dienoate, a component of sex pheromones of Pityogenes chalcographus and Acanthoscelides obtectus. In Russian Journal of General Chemistry 87(7). https://doi.org /10.1134 /S1070363217070325

Sharon MEM, Abirami CVK, Alagusundaram K. 2014. Review Article jpht Grain Storage Management in India. Journal of Postharvest Technology 02(01), 12-24.

Small GJ. 2007. A comparison between the impact of sulfuryl fluoride and methyl bromide fumigations on stored-product insect populations in UK flour mills. Journal of Stored Products Research 43(4). https://doi.org/10.1016/j.jspr.2006.11.003

Smart LE, Blight MM, Pickett JA, Pye BJ. 1994. Development of field strategies incorporating semiochemicals for the control of the pea and bean weevil, Sitona lineatus L. Crop Protection 13(2). https://doi.org/10.1016/0261-2194(94)90163-5

Smith SM, Moore D, Karanja LW, Chandi EA. 1999. Formulation of vegetable fat pellets with pheromone and Beauveria bassiana to control the larger grain borer, Prostephanus truncatus (Horn). Pesticide Science 55(7). https://doi.org/10.1002 /(SICI)1096-9063(199907)55:7<711::AID-PS990> 3.0. CO;2-A

Stevens MM, Wood RM, Mo J. 2019. Monitoring flight activity of Cryptolestes ferrugineus (Coleoptera: Laemophloeidae) in outdoor environments using a commercial pheromone lure and the kairomone 1-octen-3-ol. Journal of Stored Products Research 83. https://doi.org/10.1016 /j.jspr.2019.07.005

Stevenson BJ, Cai L, Faucher C, Michie M, Berna A, Ren Y, Anderson A, Chyb S, Xu W. 2017. Walking Responses of Tribolium castaneum (Coleoptera: Tenebrionidae) to Its Aggregation Pheromone and Odors of Wheat Infestations. Journal of Economic Entomology 110(3). https://doi.org /10.1093 /jee/tox051

Suzuki T, Sugawara R, Ozaki J. 1983. Synthesis of Optically Active Aggregation Pheromone Analogues of the Red Flour Beetle, Tribolium castaneum. Agricultural and Biological Chemistry 47(4). https://doi.org/10.1271/bbb1961.47.869

Suzuki T. 1981. Identification of the Aggregation Pheromone of Flour Beetles Tribolium castaneum and T. confusum (Coleoptera: Tenebrionidae). Agricultural and Biological Chemistry 45(6). https://doi.org/10.1271/bbb1961.45.1357

Tabasum S, Younas M, Zaeem MA, Majeed I, Majeed M, Noreen A, Iqbal MN, Zia KM. 2019. A review on blending of corn starch with natural and synthetic polymers, and inorganic nanoparticles with mathematical modeling. In International Journal of Biological Macromolecules 122. https://doi.org /10.1016/j.ijbiomac.2018.10.092

Tang Q, Wu Y, Liu B, Yu Z. 2009. Infochemical-mediated preference behavior of the maize weevil, Sitophilus zeamais motschulsky, when searching for its hosts. Entomologica Fennica 19(4). https:// doi.org /10.33338/ef.84443

Tang QF, Yang TS, Jiang JQ. 2016. Herbivore-induced rice grain volatiles affect attraction behavior of herbivore enemies. Interciencia 41(5).

Tigar BJ, Osborne PE, Key GE, Flores-S ME, Vazquez-A M. 1994. Insect pests associated with rural maize stores in Mexico with particular reference to Prostephanus truncatus (Coleoptera: bostrichidae). Journal of Stored Products Research 30(4). https://doi.org/10.1016/S0022-474X (94)90

Toews MD, Arthur FH, Campbell JF. 2009. Monitoring Tribolium castaneum (Herbst) in pilot-scale warehouses treated with beta-cyfluthrin: are residual insecticides and trapping compatible? Bulletin of Entomological Research 99(2). https://doi.org/10.1017/S0007485308006172

Toews MD, Campbell JF, Arthur FH, Ramaswamy SB. 2006. Outdoor flight activity and immigration of Rhyzopertha dominica into seed wheat warehouses. Entomologia Experimentalis et Applicata 121(1). https://doi.org/10.1111/j.1570-8703.2006.00462.x

Trematerra P, Athanassiou C, Stejskal V, Sciarretta A, Kavallieratos N, Palyvos N. 2011. Large-scale mating disruption of Ephestia spp. and Plodia interpunctella in Czech Republic, Greece and Italy. Journal of Applied Entomology 135(10). https://doi.org/10.1111/j.1439-0418.2011.01632.x

Trematerra P, Girgenti P. 1989. Influence of pheromone and food attractants on trapping of Sitophilus oryzae (L.) (Col., Curculionidae): a new trap. Journal of Applied Entomology 108(15). https://doi.org/10.1111/j.1439-0418.1989.tb00426.x

Trematerra P, Spina G. 2013. Mating-disruption trials for control of mediterranean flour moth, Ephestia kuehniella zeller (Lepidoptera: Pyralidae), in traditional flour mills. Journal of Food Protection, 76(3). https://doi.org/10.4315/0362-028X.JFP-12-3

Tripathi AK. 2018. Pests and Their Management. In Pests and Their Management. https://doi.org/ 10.1007 /978-981-10-8687-8

Urrutia RI, Yeguerman C, Jesser E, Gutierrez VS, Volpe MA, Werdin González JO. 2021. Sunflower seed hulls waste as a novel source of insecticidal product: Pyrolysis bio-oil bioactivity on insect pests of stored grains and products. Journal of Cleaner Production 287. https://doi.org/10.1016 /j.jclepro.2020.125000

Vanderwel D, Johnston B, Oehlschlager AC. 1992. Cucujolide biosynthesis in the merchant and rusty grain beetles. Insect Biochemistry and Molecular Biology 22(8). https://doi.org/10.1016

Vasil’ev AA, Vlasyuk AL, Gamalevich GD, Serebryakov EP. 1996. A versatile and convenient protocol for the stereocontrolled synthesis of olefinic insect pheromones. Bioorganic and Medicinal Chemistry 4(3). https://doi.org/10.1016/0968-

Vuts J, Francke W, Mori K, Zarbin PHG, Hooper AM, Millar JG, Pickett JA, Tõth M, Chamberlain K, Caulfield JC, Woodcock CM, Tröger AG, Csonka ÉB, Birkett MA. 2015. Pheromone Bouquet of the Dried Bean Beetle, Acanthoscelides obtectus (Col.: Chrysomelidae), Now Complete. European Journal of Organic Chemistry 2015(22). https://doi.org/10.1002/ejoc.201500196

Wakefield ME, Bryning GP, Chambers J. 2004. Progress towards a lure to attract three stored product weevils, Sitophilus zeamais Motschulsky, S. oryzae (L.) and S. granarius (L.) (Coleoptera: Curculionidae). Journal of Stored Products Research 41(2). https://doi.org/10.1016/j.jspr.2004.01.001

Wakil W, Kavallieratos NG, Usman M, Gulzar S, El-Shafie HAF. 2021. Detection of phosphine resistance in field populations of four key stored-grain insect pests in Pakistan. Insects 12(4).

Walgenbach CA, Phillips JK, Burkholder WE, King GG, Slessor KN, Mori K. 1986. Determination of chirality in 5-hydroxy-4-methyl-3-heptanone, the aggregation pheromone of Sitophilus oryzae (L.) and S. zeamais Motschulsky. Journal of Chemical Ecology 13(12). https://doi.org/10.1007

Walgenbach CA, Phillips JK, Faustini DL, Burkholder WE. 1983. Male-produced aggregation pheromone of the maize weevil,Sitophilus zeamais, and interspecific attraction between three Sitophilus species. Journal of Chemical Ecology 9(7). https://doi.org/10.1007/BF00987808

Wang C, He C, Shi Y, Xiang H, Tian W. 2015. Synthesis of tribolure, the common aggregation pheromone of four Tribolium flour beetles. Chinese Journal of Chemistry 33(6). https://doi.org/ 10.1002/cjoc.201500334

Weaver DK, Petroff AR. 2004. Pest management for grain storage and fumigation – Seed treatment – Pest control – Grain storage & seed treatment facilities 81. Montana State University. Universityhttps: //www.montana.edu/extension/pesticides/documents/manuals/FumSeed_2004.pdf

White PR, Chambers J, Walter CM, Wilkins JPG, Millar JG. 1989. Saw-toothed grain beetle Oryzaephilus surinamensis (L.) (Coleoptera: Silvanidae) – Collection, identification, and bioassay of attractive volatiles from beetles and oats. Journal of Chemical Ecology 15(3). https://doi.org /10.1007/BF01015195

White PR, Chambers J. 1989. Saw-toothed grain beetle Oryzaephilus surinamensis (L.) (Coleoptera: Silvanidae) – Antennal and behavioral responses to individual components and blends of aggregation pheromone. Journal of Chemical Ecology 15(3). https://doi.org/10.1007/BF01015196

Wijayaratne LKW, Arthur FH, Whyard S. 2018. Methoprene and control of stored-product insects. Journal of Stored Products Research 76. https://doi.org/10.1016/j.jspr.2016.09.001

Wijayaratne LKW, Fernando MD, Palipane KB. 2009. Control of insect pests under ware-house conditions using smoke generated from partial combustion of rice (paddy) husk. Journal of the National Science Foundation of Sri Lanka 37(2). https://doi.org/10.4038/jnsfsr.v37i2.1069

Wong-Corral FJ, Ramírez-Martínezy M, Cortez-Rocha MO, Borboa-Flores J, Leos-Martínez J. 2001. Presence of Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) in Sonora, Mexico, first report. Southwestern Entomologist 26(2).

Zarbin PHG, Cruz WDO, Ferreira JTB. 1998. Stereospecific synthesis of two isomers of (4,8) – Dimethyldecanal: The aggregation pheromone of Tribolium spp. Journal of the Brazilian Chemical Society 9(5). https://doi.org/10.1590/S0103-50531998000500018

Zarbin PHG, Rodrigues MACM, Lima ER. 2009. Feromônios de insetos: tecnologia e desafios para uma agricultura competitiva no Brasil. Química Nova 32(3). https://doi.org/10.1590/s0100-40422009000300016