Role of arbuscular mycorrhizal fungi and nitrogen fixing bacteria on legume growth under various environmental stresses
Paper Details
Role of arbuscular mycorrhizal fungi and nitrogen fixing bacteria on legume growth under various environmental stresses
Abstract
Arbuscular mycorrhizal fungi and rhizobia are two important plant symbionts. Rhizobia are known for fixing nitrogen inside legume root nodules while Arbuscular mycorrhizal (AM) fungi provide plants with nutrients and other benefits. AM fungi are ubiquitous soil microorganisms and establish a symbiotic relationship with more than 80% of plant species of natural ecosystems while rhizobia association is more specific and involved almost leguminous plants. The symbiosis between legumes-Rhizobium and arbuscular mycorrhizal fungi (AMF) improves plant growth and tolerance against biotic and abiotic stress. This suggests that it is possible to use rhizobia and mycorrhizal to mitigate detrimental impacts of these stresses on terrestrial ecosystem health and agricultural productivity. This will lead to accelerate the natural process of re-vegetation in decertified semiarid ecosystem. AMF and rhizobia interactions in legumes host are complex and our understanding of their impact on plant growth is far from complete. In fact Legumes can host AMF and N2-fixing bacteria at the same time. However the two symbioses are rarely studied together because of the obligate biotrophy of arbuscular myccorhizal fungi. In this review, we look into the behavior of three symbiotic associations under stress conditions: drought, salt, pathogens, low minerals and polluted soils with heavy metals. Mutualistic symbioses confer host fitness benefits that can result in stress-tolerance. Based on the analyzed documents, mineral nutrient improvement seems to be the common mechanism under all environmental stresses. The trends of this thematic area will be outlined, from genetically modified microorganisms in order to improve classical screening to found efficient symbiotic micro organisms.
Abdel-Fattah GM, El-Dohlob SM, El-Haddad SA, Hafez EE, Rashad YM. 2010. An ecological view of arbuscular mycorrhizal status in some Egyptian plants. J Environ Sci. 37, 123–136.
Al-Garni SMS. 2006. Increased heavy metal tolerance of cowpea plants by dual inoculation of an arbuscular mycorrhizal fungi and nitrogen-fixer Rhizobium bacterium. Afr J Biotech. 5(2), 133-142.
Andrade SAL, Abreu CA, de Abreu MF, Silveira APD. 2004. Influence of lead additions on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants. Appl Soil Ecol 26, 123–131. http://dx.doi.org/10.1016/j.apsoil.2003.11.002
Arfaoui A, Sifi B, El Hassni M, EI Hadrami I, Boudabous A. 2005. Biochemical analysis of chickpea protection against Fusarium wilt afforded by two Rhizobium isolates. Plant Pathol J 4, 35–42.
Ashraf M, Foolad MR. 2007. Roles of glycine betaine and Proline in improving plant abiotic stress resistance. Envir and Exp Bot 59(2), 206-216. http://dx.doi.org/10.1016/j.envexpbot.2005.12.006
Augé RM, Duan X. 1991. Mycorrhizal fungi and nonhydraulic root signals of soil drying. Plant Physiol 97, 821–824.
Augé RM, Schekel KA, Wample RL. 1986. Osmotic adjustment in leaves of VA mycorrhizal nonmycorrhizal rose plants in re-sponse to drought stress. Plant Physiol 82, 765–770. http://dx.doi.org/10.1104/pp.82.3.765
Aysa E, Demir S. 2009. Using arbuscular mycorrhizal fungi and Rhizobium legumiosarum biovar phaseoli against Sclerotinia sclerotiorum (Lib.) de bary in the common bean (Phaseolus vulgaris L.). Plant Pathol J 8, 74–78.
Azcón-Aguilar C, Barea JM. 1996. Arbuscular mycorrhizas and biological control of soil-borne plant pathogens. An overview of the mechanisms involved. Mycorrhiza 6, 457–464. http://dx.doi.org/10.1007/s005720050147
Barea JM, AzcoÂn-Aguilar C. 1983. Mycorrhizas and their significance in nodulating nitrogen-fixing plants. Adv Agron 36, 1–54.
Barea JM, Tobar RM, Azcon-Aguilar C. 1996. Effects of a genetically modified Rhizobium meliloti inoculant on the development of arbuscular mycorrhizas, root morphology, nutrient uptake and biomass accumulation in Medicago sativa. New Phytologist 134, 361-369. http://dx.doi.org/10.1111/j.1469-8137.1996.tb04641.x
Bayne HG, Bethlenfalvay GJ. 1987. The Glycine-Glomus-Rhizobium symbiosis. IV. Interaction between the mycorrhizal and nitrogen-fixing endophytes. Plant Cell Environ. 10, 607–612.
Bell RW, Dell B. 2008. Micronutrients for Sustainable Food, Feed, Fibre and Bioenergy Production. First edition, IFA, Paris, France (www.fertilizer.org)
Benhamou N, Fortin JA, Hamel C, St-Arnaud M, Shatilla A. 1994. Resistance responses of mycorrhizal Ri T-DNA-transformed carrot roots to infection by Fusarium oxysporum f. sp. chrysanthemi Phytopathology 84, 958-968.
Bethlenfalvay GJ, Brown MS, Stafford AE. 1985. Glycine-Glomus Rhizobium symbiosis. II. antagonistic effects between mycorrhizal colonization and nodulation. Plant Physiol 79, 1054–1058. http://dx.doi.org/10.1104/pp.79.4.1054
Bhattacharjee S, Sharma GD. 2012. Effect of Dual Inoculation of Arbuscular Mycorrhiza and Rhizobium on the Chlorophyll, Nitrogen and Phosphorus Contents of Pigeon Pea (Cajanus cajan L.). Advances in Microbiology 2, 561-564. http://dx.doi.org/10.4236/aim.2012.24072
Bingham FT, Pereyea FJ, Jarrell WM. 1986. Metal toxicity to agricultural crops. Met Ions Biol Syst 20,119–156.
Biró B, Köves-Péchy K, Vörös I, Takács T, Eggenberger P, Strasser RJ. 2000. Interrelations between Azospirillum and Rhizobium nitrogen-fixers and arbuscular mycorrhizal fungi in the rhizosphere of alfalfa in sterile, AMF-free or normal soil conditions. Appl. Soil Ecol. 15, 159–168. http://dx.doi.org/10.1016/S0929-1393(00)00092-5
Bradbury SM, Peterson RL, Bowley SR. 1991. Interactions between three alfalfa nodulation genotypes and two Glomus species. new p 119, 115– 120.
Burd IG, Dixon DG, Glick BR. 2000. Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Canadian Journal of Microbiology 46, 237–245.
Caetano-Anollés G, Gresshoff PM. 1991. Plant genetic control of nodulation. Ann Rev Microbiol 45, 345–382.
Cardoso IM, Kuyper TW. 2006. Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116, 72– 84. http://dx.doi.org/10.1016/j.agee.2006.03.011
Compant S, Brion D, Jerzy N, Christophe C, Essaíd AB. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71, 4951–4959.
Dar GH, Zargar MY, Beigh GM. 1997. Biocontrol of Fusarium root-rot in the common bean (Phaseolus vulgaris L.) by using symbiotic Glomus mosseae and Rhizobium leguminosarum. Microb Ecol. 34, 74–80. http://dx.doi.org/10.1007/s002489900036
Diouf D, Duponnois R, Ba AM, Neyra M, Leusueur D. 2005. Symbiosis of A. auriculiformis and A. mangium with mycorhizal fungi and Bradirhizobium spp. Improves salt tolerance in greenhouse conditions. Functional Plant Biology 32, 1143-1152. http://dx.doi.org/10.1071/FP04069
Evelin H, Kapoor R, Giri B. 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104, 1263-1280. http://dx.doi.org/10.1093/aob/mcp251
Fan QJ, Liu JH. 2011. Colonization with arbuscular mycorrhizal fungus affectsgrowth, drought tolerance and expression of stress-responsive genes in Poncirustrifoliata. Acta Physiol. Plant. 33, 1533–1542. http://dx.doi.org/10.1007/s11738-011-0789-6
FAO. 1983. Technical Handbook on Symbiotic Nitrogen Fixation. Food and Agriculture Organization of the United Nations, Rome.
Feng G, Zhang FS, Li LX, Tian CY, Tang C, Rengel Z. 2002. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza, 12, 185-190. http://dx.doi.org/10.1007/s00572-002-0170-0
Filion M, St-arnaud M, Fortin JA. 1999. Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol. 141, 525-533.
Gao X, Lu X, Wu M, Zhang H, Pan R. 2012. Co-Inoculation with Rhizobia and AMF Inhibited Soybean Red Crown Rot: From Field Study to Plant Defense-Related Gene Expression Analysis. PLoS ONE 7(3), e33977. http://dx.doi.org/10.1371/journal.pone.0033977
Garg N, Manchanda G. 2008. Effect of arbuscular mycorrhizal inoculation of salt-induced nodule senescence in Cajanus cajan (pigeonpea). Journal of Plant Growth Regulators 27, 115–124. http://dx.doi.org/10.1007/s00344-007-9038-z
Giller KE, McGrath SP, Hirsch PR. 1989. Absence of nitrogen fixation in clover grown on soil subject to long-term contamination with heavy metals is due to survival of only ineffective Rhizobium. Soil Biol. Biochem. 21, 841–848. http://dx.doi.org/10.1016/0038-0717(89)90179-X
Goss MJ, de Varennes A. 2002. Soil disturbance reduces the efficacy of mycorrhizal associations for early soybean growth and N2 fixation. Soil Biol. Biochem. 34, 1167–1173. http://dx.doi.org/10.1016/S0038-0717(02)00053-6
Graham PH. 1981. Some problems on nodulation and symbiotic nitrogen fixation in Phaseolus vulgaris L.: A review. Field Crop Res. 4, 93–112. http://dx.doi.org/10.1016/0378-4290(81)90060-5
Grichko VP, Filby B, Glick BR. 2000. Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb and Zn. J. Biotechnol. 81, 45–53. http://dx.doi.org/10.1016/S0168-1656(00)00270-4
Hajlaoui H, El Ayeb N, Garrec JP, Denden M. 2010. Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (Zea mays L.) varieties. Ind Crop Product 31, 122-130. http://dx.doi.org/10.1016/j.indcrop.2009.09.007
Hindumathi A, Reddy BN. 2012. Synergistic effect of arbuscular mycorrhizal fungi and Rhizobium on the growth and charcoal rot of soybean [Glycine max (L.)Merr.] World Journal of science and Technology 2(7), 63-70.
Ismaiel AA, Hegazy HS, Azb MAP. 2014 Physiological response of Vicia faba L. to inoculation with Rhizobium and arbuscular mycorrhizal fungi: Comparative study for irrigation with Nile water and wastewater. AJCS 8(5), 781-790.
Jing Y, He Z, Yang X. 2007. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8, 192–207. http://dx.doi.org/10.1631/jzus.2007.B0192
Joner EJ, Leyval C. 1997. Uptake of 109Cd by Roots and Hyphae of a Glomus mosseae /Trifolium subterraneum Mycorrhiza from Soil Amended with High and Low Concentration of Cadmium, New Phytol, 135, 353-360. http://dx.doi.org/10.1046/j.1469-8137.1997.00633.x
Juniper S, Abbott L. 1993. Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 4, 45–57.
Kadian N, Yadav K, Aggarwal A. 2014. Application of AM Fungi with Bradyrhizobium japonicum in improving growth, nutrient uptake and yield of Vigna radiata L. under saline soil. Journal of Stress Physiology & Biochemistry 10, 134-152.
Khan MS, Zaisi A, Musarrat J. 2010. Microbes for Legume Improvement. eds Microbes for Legumes impovement, Vienna : springer, 273-271 p.
Koomen I, McGrath SP, Giller K. 1990. Mycorrhizal Infection of Clover is Delayed in Soils Contaminated with Heavy Metals from Past Sewage Sludge Applications, Soil Biol. Biochem. 22, 871-873. http://dx.doi.org/10.1016/0038-0717(90)90170-5
Lin AJ, Zhang XH, Wong MH, Ye ZH, Lou LQ, Wang YS, Zhu YG. 2007. Increase of multimetal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization. Environ Geochem Health 29, 473–481. http://dx.doi.org/10.1007/s10653-007-9116-y
Linderman RG. 1992. Vesicular arbuscular mycorrhizae and soil microbial interactions. In: Mycorrhizae in sustainable agriculture. ASA Special Publication No. 54, American Society of Agronomy Inc. Madison, Wisconsin, USA, 45–70 p.
Manchanda G, Garg N. 2011. Plant Biosystems – An International Journal Dealing with all Aspects of Plant Biology: Official Journal of the Societa Botanica Italiana. 145, 88-97.
Marschner P, Grierson PF, Rengel Z. 2005. Microbial community composition and functioning in the rhizosphere of three Banksia species in native woodland in Western Australia. Applied Soil Ecology 28, 191–201. http://dx.doi.org/10.1016/j.apsoil.2004.09.001
Marulanda A, Azcón R, Ruiz-Lozano JM. 2003. Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiol Plant 119, 526–533. http://dx.doi.org/10.1046/j.1399-3054.2003.00196.x
Medina A, Jakobsen I, Vassilev N, Larsen AR. 2007. Fermentation of sugar beet waste by Aspergillus niger facilitates growth and P uptake of external mycelium of mixed populations of arbuscular mycorrhizal fungi. Soil Biol Biochem 39, 485–492. http://dx.doi.org/10.1016/j.soilbio.2006.08.019
Mortimer PE, Pérez-Ferna´ndez MA, Valentine AJ. 2008. The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biol Biochem 40, 1019– 1027. http://dx.doi.org/10.1016/j.soilbio.2007.11.014
Mosse B. 1962. The establishment of vesicular-arbuscular mycorrhiza under aseptic conditions. J. Gen. Microbiol. 27, 509-520.
Muller J, Boller T, Wiemkem A. 2001. Trehalose becomes the most abundant non-structural carbohydrate during senescence of of soybean nodules. J Exp Bot 52, 943–947.
Munns R. 2002. Comparative physiology of salt and water stress, Plant Cell Environ. 20, 239–250. http://dx.doi.org/10.1046/j.00168025.2001.00808.x
Ocón A, Hampp R, Requena N. 2007 Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi. New Phytol 174, 879–891. http://dx.doi.org/10.1111/j.1469-8137.2007.02048.x
Parádi I, Bratek Z, Láng F. 2003. Influence of arbuscular mycorrhiza and phosphorus supply on polyamine content, growth and photosynthesis of Plantago lanceolata. Biol. Plant. 46, 563- 569.
Patreze CM, Cordeiro L. 2004. Nitrogen-fixing and vesiculararbuscular mycorrhizal symbioses in some tropical legume trees of tribe Mimosease, Forst Ecol. Mangt. 196, 275-285.
Pelaez C, Olivares E, Cuenca G, Izaguirre-Mayoral ML. 2010. Manganese modulates the responses of nitrogen-supplied and Rhizobium-nodulated Phaseolus vulgaris L. to inoculation with arbuscular mycorrhizal fungi. Soil Biology & Biochemistry 42, 1924 -1933. http://dx.doi.org/10.1016/j.soilbio.2010.07.001
Porcel R, Ruíz-Lozano JM. 2004. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot. 55, 1743– 1750.
Rabie GH, Almadini AM. 2005. Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotechnol 4, 210–222.
Rajwar A, Sahgal M, Johri BN. 2013. Legume- Rhizobia symbiosis and interactions in agrosystems. in: Arora NK(ed) plant microbe symbiosis: fundamentals and advances. Springer, New Delhi 233-265 p. http://dx.doi.org/10.1007/978-81-322-1287-4_9
Rapparini F, Peñuelas J. 2014. Mycorrhizal Fungi to Alleviate Drought Stress on Plant Growth. Use of Microbes for the Alleviation of Soil Stresses Miransari (ed.) 21-42 p. http://dx.doi.org/10.1007/978-1-4614-9466-9_2.
Rao AV, Tak R. 2002. Growth of different tree species and their nutrient uptake in limestone mine spoil as influenced by arbuscular mycorrhizal (AM) fungi in India arid zone. J. Arid Environ 51, 113-119. http://dx.doi.org/10.1006/jare.2001.0930
Redon PO, Beguiristain T, Leyval C. 2009. Differential effects of AM fungal isolates on Medicago truncatula growth and metal uptake in a multimetallic (Cd, Zn, Pb) contaminated agricultural soil. Mycorrhiza 19, 187–195. http://dx.doi.org/10.1007/s00572-009-0230-9
Rivera-Becerril F, Calantzis C, Turnau K, Caussanel JP, Belimov AA, Gianinazzi S, Strasser RJ, Gianinazzi-Pearson V. 2002. Cadmium accumulation and buffering of cadmiuminduced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot. 53, 1177–1185. http://dx.doi.org/10.1093/jexbot/53.371.1177
Ruiz-Lozano JM, Azcón R. 1993. Specificity and functional compatibility of VA mycorrhizal endophytes in association with Bradyrhizobium strains in Cicer arietinum. Symbiosis 15, 217–226.
Ruiz-Lozano JM, Azcón R, Gómez M. 1995. Effects of arbuscular- mycorrhizal Glomus species on drought tolerance: Physiological and nutritional plant responses. Applied and Environmental Microbiology 61, 456–460.
Ruiz-Lozano JM, Collados C, Barea JM, Azcón R. 2001. Arbuscular mycorrhizal symbiosis can alleviate drought induced nodule senescence in soybean plants. New Phytologist 151, 493–502. http://dx.doi.org/10.1046/j.0028-646x.2001.00196.x
Sakamoto K, Ogiwara N, Kaji T. 2013. Involvement of autoregulation in the interaction between rhizobial nodulation and AM fungal colonization in soybean roots. Biol Fertil Soils 49, 1141-1152. http://dx.doi.org/10.1007/s00374-014-0896-9.
Sardans J, Peñuelas J, Ogaya R. 2008. Drought’s impact on Ca, Fe, Mg, Mo and S concentration and accumulation patterns in the plant sand soil of a Mediterranean evergreen Quercus ilex forest. Biogeochemistry 87, 49–69. http://dx.doi.org/10.1186/1471-2229-10-188
Saxena AK, Rathi SK, Tilak KBR. 1997. Differential effect of various endomycorrhizal fungi on nodulating ability of green gram by Bradyrhizobium sp. (Vigna) strain S24. Biol Fertil Soils 24, 175–178. http://dx.doi.org/10.1007/s003740050227
Scheublin TR, Vander Heijden MGA. 2006. Arbuscular mycorrhizal fungi colonize nonfixing root nodules of several legume species. New Phytol. 172, 732-738. http://dx.doi.org/10.1111/j.1469-8137.2006.01858.x
Selvaraj T, Chellappan P. 2006. Arbuscular Mycorrhizae: A Diverse Personality 7, 349-358.
Siddiqui ZA, Singh LP. 2004. Effects of soil inoculants on the growth, transpiration and wilt disease of chickpea. J Plant Dis Protect 111, 151–157.
Singh LP, Singh Gill S, Tuteja N. 2011. Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 2, 175–191. http://dx.doi.org/10.4161/psb.6.2.14146
Singh PK, Singh M, Vyas D. 2010. Biocontrol of Fusarium Wilt of Chickpea using Arbuscular Mycor-rhizal Fungi and Rhizobium leguminosorum Biovar. Caryologia Vol. 63, no. 4, 349-353. http://dx.doi.org/10.1080/00087114.2010.10589745
Siqueira JO, Saggin-Júnior OJ. 1995 The importance of mycorrhizal association in natural low fertility soils. In: Machado, editor. International symposium on environ-mental stress: maize in perspective. p. 240–80.
Smith SE. 2002. Soil microbes and plants-raising interest, mutual gains. New Phytol. 156, 142–144. http://dx.doi.org/10.1046/j.1469-8137.2002.00514.x
Smith SE, Robson AD, Abbott LK. 1992. The involvement of mycorrhizas in assessment of genetically dependent efficiency of nutrient uptake and use. Plant and Soil 146, 169–179. http://dx.doi.org/10.1007/BF00012010
Soumare A, Manga A, Thiao M, Ndoye, I, Diop T. 2008. Effect of the inoculation of arbusculars mycorrhizals fungi on the development of Acacia nilotica subsp. Adestringens subjected to various concentrations of salt. Université Cheich Anta Diop Journal des Sciences et Technologie 7, 74 – 83.
Stamford NP, Ortega AD, Temprano F, Santos DR. 1997. Effects of phosphorus fertilization and inoculation of Bradyrhizobium and mycorrhizal fungi on growth of Mimosa caesalpiniaefolia in an acid soil. Soil Biol Biochem 29, 959–964 http://dx.doi.org/10.1016/s0038-0717(96)00240-4
Sundaresan Ρ, Ubalthoose Raja Ν, Gunasekaran Ρ. 1993. Induction and accumulation of phytoalexins in cowpea roots infected with a mycorrhizal fungus Glomus fasciculatum and their resistance to Fusarium wilt disease. J. Biosci. 18(2), 291–301. http://dx.doi.org/10.1007/BF02703126
Tabak H, Lens P, van Hullebusch E, Dejonghe W. 2005. Develoment in bioremediation of soil and sediment polluted with metalsand radionuclides- 1. Microbial processes and mechanisms affecting metals contamination and influencing metals toxicity and tranpot. Rev envron Sci Biotechnol. 24, 115156. http://dx.doi.org/10.1007/s11157-005-2169-4
Tajini F, Trabelsi M, Drevon JJ. 2012. Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.) Saudi Journal of Biological Sciences 19, 157–163. http://dx.doi.org/10.1016/j.sjbs.2011.11.003
Tobar RM, Azcón-Aguilar C, Sanjuan J, Barea JM. 1996. Impact of a genetically modified Rhizobium strain with improved nodulation competitiveness on the early stages of arbuscular mycorrhiza formation. Appl Soil Ecol. 4, 15–21. http://dx.doi.org/10.1016/0929-1393(96)00104-7.
van der Heijden MGA, Bardgett RD, Straalen NMV. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3), 296–310. http://dx.doi.org/10.1111/j.1461-0248.2007.01139.x
Van der Heijden MGA, Bardgett RD, van Straalen NM. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11, 296–310. http://dx.doi.org/10.1111/j.1461-0248.2007.01139.x
Vivas A, Biró B, Ruíz-Lozano JM, Barea JM, Azcón R. 2006. Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn toxicity. Chemosphere 62, 1523–1533. http://dx.doi.org/10.1016/j.chemosphere.2005.06.05 3
Xavier LJC, Germida JJ. 2002. Response of lentil under controlled conditions to co-inoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy. Soil Biol Biochem 34, 181–188. http://dx.doi.org/10.1016/S0038-0717(01)00165.1
Yano-Melo AM, Saggin OJ, Maia LC. 2003. Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agric. Ecosystems and Environ. 95 (1), 343-348. http://dx.doi.org/10.1016/S0167-8809(02)00044.0
Zahran HH. 1999. Rhizobium–legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews 63, 968–989.
Zandavalli RB, Dillenburg LR, Paul, VD. 2004. Growth responses of Araucaria angustifolia (Araucariaceae)to inoculation with the mycorrhizal fungus Glomus clarum. Appl. Soil Ecol. 25( 3), 245-255. http://dx.doi.org/10.1016/j.apsoil.2003.09.009
Zhang YF, Wang P, Yang YF, Bi Q, Tian SY, Shi XW. 2011. Arbuscular mycorrhizal fungi improve re-establishment of Leymus chinensis in bare salin– alkaline soil: impli-cation on vegetation restoration of extremely degraded land. J Arid Environ. 75, 773–8 http://dx.doi.org/10.1016/j.jaridenv.2011.04.008
Zou YN, Wu QS. 2011. Sodium Chloride Stress Induced Changes in Leaf Osmotic Adjustment of Trifoliate Orange (Poncirus trifoliata) Seedlings Inoculated with Mycorrhizal Fungi. Not Bot Horti Agrobo 39(2), 64-69.
Abdoulaye Soumare, Tahir Diop, Anicet Manga, Ibrahima Ndoye (2015), Role of arbuscular mycorrhizal fungi and nitrogen fixing bacteria on legume growth under various environmental stresses; IJB, V7, N4, October, P31-46
https://innspub.net/role-of-arbuscular-mycorrhizal-fungi-and-nitrogen-fixing-bacteria-on-legume-growth-under-various-environmental-stresses/
Copyright © 2015
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0