Welcome to International Network for Natural Sciences | INNSpub

Paper Details

Research Paper | December 1, 2013

VIEWS 3
| Download 2

SAHA, histone deacetylase inhibitor causes reduction of aflatoxin production and conidiation in the Aspergillus flavus

Tahereh Basimia, Saeed Rezaee, Hamid Reza Zamanizadeh, Amir mousavi

Key Words:


Int. J. Biosci.3(12), 9-16, December 2013

DOI: http://dx.doi.org/10.12692/ijb/3.12.9-16

Certification:

IJB 2013 [Generate Certificate]

Abstract

Transcriptional regulation in eukaryotes occurs within a chromatin setting and is strongly influenced by posttranslational modification of histones.The regulation of histone acetyltransferases (HATs) and histone deacetylases(HDACs) is one of important post translational modification (PTMs).Aspergillus flavus is the main source of aflatoxin,the most important mycotoxins in the world and food supplies.HDACs can play an important role in secondary metabolites production and normal vegetative growth.The focus of our work was on underastanding the possible effect of HDAC inhibitors ,SAHA, on growth, aflatoxin synthesis, conidiation and morphology in A.flavus.The result indicate that SAHA inhibits the ability to produce aflatoxin B1 and also causes a “fluffy” phenotype.This change was dose-dependent and not hereditary.Three HDACs genes were founded in this fungi ,HosA,HosB and Rpd1 that have conserved domains like other fungi .This results suggest that HDACs have important roles in A. flavus and HDACi could prove to be a valid approach for selective treatment of infection cause by Aspergillus species and other fungi and be a good subject for epigenetic remodeling in fungi.

VIEWS 3

Copyright © 2013
By Authors and International Network for
Natural Sciences (INNSPUB)
http://innspub.net
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

SAHA, histone deacetylase inhibitor causes reduction of aflatoxin production and conidiation in the Aspergillus flavus

Amaik  S,  Keller  NP.  2011.  Aspergillus  flavus. Annual Review of Phytopathology 49, 1-27. http://dx.doi.org/10.1146/annurev-phyto-072910-095221

Bele P, Amaia GS, MaTeresa GJ, Covadonga V. 2005. PCR detection assays for the ochratoxin-producing Aspergillus carbonarius and Aspergillus ochraceus species. International Journal of Food Microbiology 104, 207–214. http://dx.doi.org/10.1016/j.ijfoodmicro. 2005.02.011

Brosch G, Loid lP, Graessle S. 2008. Histone modifications and chromatin dynamics: a focus on filamentous fungi. FEMS Microbiology Reviews 32, 409–439. http://dx.doi.org/10.1111/j.1574-6976.2007.00100

Chen SC, Lewis RE, Kontoyiannis DP. 2011. Direct effects of non-antifungal agents used in cancer chemotherapy and organ transplantation on the development and virulence of Candida and Aspergillus species. Virulence 2, 280-95. http://dx.doi.org/10.4161/viru.2.4.16764

Da   Costa  CL,   Geraldo   MRF,   Arrotéia   CC, Kemmelmeier C. 2010. In vitro activity of neem oil [Azadirachta indica, A. Juss (Meliaceae)] on Aspergillus  flavus  growth,  sporulation,  viability  of spores, morphology and Aflatoxins Bproduction. Advances in Bioscience and Biotechnology  1, 292-299. http://dx.doi.org/10.4236/abb.2010.14038 

Doyle JJ, Doyle JL .1987. A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochemical Bulletin 19, 11–15.

Fisch KM, Gillapsy AF, Gipson M, Henrikson JC, Hoover AR, Jackson L, Najar FZ, Wagele, H, Cichewicz RH. 2009. Chemical induction of silent biosynthetic pathway transcription in Aspergillus niger. Juornal Industtrial Microbiol Biothechnology 36, 1199-1213. http://dx.doi.org/10.1007/s10295.009.0601.4

Graessle S, Loidl P, Brosch G. 2001. Histone acetylation: plants and fungi as model systems for the investigation of histone deacetylases. Molecular of Life Science 58, 704-720. http://dx.doi.org/1420.682x/01/060704.17

Graessle S, Dangl M, Haas H, Mair K, Trojer P, Brandtner E, Walton JD, Loidl D, Brosch G. 2000. Characterization of two putative histone deacetylase genes from Aspergillus nidulans. Biochimica et Biophysica Acta 1492, 120-126. http://dx.doi.org/10.1016/S0167-4781(00)00093-2

Guevara- Gonzalez RG. 2011. Aflatoxins-Biochemistry and Molecular Biology. Published by InTech., p. 478.

Houllier EG, Fulcrand G, Magnaghi-Jaulin L, Jaulin C. 2009. Histone deacetylase inhibitors and genomic instability. Cancer Letters 247, 169-176. http://dx.doi.org/10.1016/j.canlet. 2008.06.005

Izawa M, Takekawa O, Arie T, Teraoka T, Yoshida M, Kimura M, Kamakura T. 2009. Inhibition of histone deacetylase causes reduction of appressorium formation in the rice blast fungus Magnaporthe oryzae. Journal of general and applied microbiology 55, 489-98. http://dx.doi.org/10.2323/jgam.55.489

Jin Y, Bok JW, Guzman-de-pena D, Keller NP. 2002. Requirement of spermidine for developmental transition in Aspergillus nidulans.Molecular Microbiology 46, 801-812. http://dx.doi.org/10.1046/j.1365-2958.2002.03201.x 

Lee IOJH, Shwab EK, Dagenais TR, Andes D, Keller NP. 2009. HdaA, a class 2 histone deacetylase of Aspergillus fumigatus, affects germination and secondary metabolite production. Fungal Genetics and Biology 46, 82–790. http://dx.doi.org/ 10.1016/j.fgb. 2009. 06.007

Lin JQ, Zhao XX, Wang CC, Xie Y, Li GH, He ZM. 2013. 5-Azacytidine inhibits aflatoxin biosynthesis in Aspergillus flavus. Annals of Microbology 63 , 763-769. http://dx.doi.org/10.1007/s13213-012-0531-7

Sambrook J, Russell DW. 2001. Molecular Cloning: A laboratory manual,. 3rd ed, Cold Spring Harbor Laboratory Press, New York.

Simonetti G, Passariello C, Rotili D, Mai A, Garaci E. 2007.Histone deacetylase inhibitors may reduce pathogenicity and virulence in Candida albicans. FEMS Yeast Research 7, 1371-1380. http://dx.doi.org/10.111/j.1567.1364.2007. 00267.x

Shwab EK, Bok JW, Tribus M, Galehr J, Graessle S, Keller NP. 2007. Histone deacetylase activity regulates chemical 1 diversity in Aspergillus. Eukaryotic Cell 9, 1656-1664. http://dx.doi.org/10.1128/EC.00186-07

Tamame M, Antequera F, Villanueva JR, Santos T. 1983a.  5-Azacytidine  Induces  heritable biochemical and developmental changes in the fungus Aspergillus niger. Journal of General Microbiology 129, 2585–2594. http://dx.doi.org/10.1099/00221287-129-8-2585

Tamame M, Antequera F, Villanueva JR, Santos T. 1983b. High-frequency conversion to  a “fluffy” developmental phenotype in Aspergillus spp. by 5-azacytidine treatment: evidence for involvement of a single nuclear gene. Molecular Cell Biology 3, 2287–2297. http://dx.doi.org/10.1128/MCB.3.12.2287

Tribus M, Bauer I, Galehr J, Rieser G, Trojer P,  Brosch G. 2010. A novel motif in fungal class 1 histone deacetylases is essential for growth and development of Aspergillus. Molecular Biology of the Cell 21, 345-53. http://dx.doi.org/10.1091/mbc.E09-08-0750

Williams RB, Henrikson JC, Hoover AR, Lee AE, Cichewicz RH. 2008.Epigenetic remodeling of the fungal secondary metabolome. Organic and Biomolecular Chemistry 6, 1895-1897. http://dx.doi.org/10.1039/B804701D

Zacchi LF, Schulz WL, Davis DA. 2010. HOS2 and HDA1 encode histone deacetylases with opposing roles in Candida albicans morphogenesis. PLoS ONE 5, e12171. http://dx.doi.org/10.1371/journal.pone.0012171

SUBMIT MANUSCRIPT

Style Switcher

Select Layout
Chose Color
Chose Pattren
Chose Background