Selenium nanoparticles: Green synthesis using algae and their potential applications for sustainable agriculture
Paper Details
Selenium nanoparticles: Green synthesis using algae and their potential applications for sustainable agriculture
Abstract
Selenium is a trace and essential micronutrient for human, animal, and microbial health. Many researchers have recently become interested in selenium nanoparticles (SeNPs) because of their biocompatibility, bioavailability, and low toxicity. Selenium nanoparticles are widely used in biological applications because of their high bioactivity. Physical, chemical, and biological approaches can all synthesise selenium nanoparticles, but biologically synthesised SeNPs are less toxic, cost-effective, and eco-friendly. Algae have several beneficial physiologically active compounds that can reduce selenium and participate in nanoparticle coating, making them an effective tool for generating SeNPs. Researchers have widely investigated various selenium nanoparticle-based formulations for plant health management and soil improvement, including nanosized fertilisers, pesticides, and resistant plant diseases. This review paper covers SeNPs synthesising using algae and their wide agricultural applications.
Abd El-Halim AA, Salama AM, Ibrahim MM, Aiad MA, Shokr M. 2022. Nano-gypsum in low dose improves the physicochemical properties of saline sodic soil. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2022.2149741
Abdelraouf AMN, Hussain AA, Naguib DM. 2023. Nanochitosan encapsulated Pseudomonas fluorescens greatly reduces Fusarium wilt infection in tomato. Rhizosphere 25, 100676. https://doi.org/10.1016/j.rhisph.2023.100676
Adisa IO, Pullagurala VLR, Peralta-Videa JR, Dimkpa CO, Elmer WH, Gardea-Torresdey J, White J. 2019. Recent advances in nano-enabled fertilizers and pesticides: A critical review of mechanisms of action. Environ Sci Nano 6(7), 2002-2030. https://doi.org/10.1039/c9en00265k
Afzal B, Fatma T. 2021. Selenium nanoparticles: Green synthesis and exploitation. In Emerging technologies for nanoparticle manufacturing (pp. 473-484). Cham: Springer International Publishing.
Afzal B, Yasin D, Naaz H, Sami N, Zaki A, Rizvi MA, Fatma T. 2021. Biomedical potential of Anabaena variabilis NCCU-441 based Selenium nanoparticles and their comparison with commercial nanoparticles. Sci Rep 11(1), 13507.
Aguirre-Becerra H, Feregrino-Perez AA, Esquivel K, Perez-Garcia CE, Vazquez-Hernandez MC, Mariana-Alvarado A. 2022. Nanomaterials as an alternative to increase plant resistance to abiotic stresses. Front Plant Sci 13, 1023636. https://doi.org/10.3389/fpls.2022.1023636
Ahmad U, Sharma L. 2023. A review of Best Management Practices for potato crop using Precision Agricultural Technologies. Smart Agric Technol 4, 100220. https://doi.org/10.1016/j.atech.2023.100220
Ahmed A, He P, He P, Wu Y, He Y, Munir S. 2023. Environmental effect of agriculture-related manufactured nano-objects on soil microbial communities. Environ Int 173, 107819. https://doi.org/10.1016/j.envint.2023.107819
Alipour S, Kalari S, Morowvat MH, Sabahi Z, Dehshahri A. 2021. Green synthesis of selenium nanoparticles by cyanobacterium Spirulina platensis (abdf2224): Cultivation condition quality controls. Biomed Res Int 2021(1), 6635297.
Anand KV, Anugraga AR, Kannan M, Singaravelu G, Govindaraju K. 2020. Bio-engineered magnesium oxide nanoparticles as nano-priming agent for enhancing seed germination and seedling vigor of green gram (Vigna radiata L.). Mater Lett 271, 127792. https://doi.org/10.1016/j.matlet.2020.127792
Antony D, Yadav R, Kalimuthu R. 2021. Accumulation of Phyto-mediated nano-CeO₂ and selenium-doped CeO₂ on Macrotyloma uniflorum (horse gram) seed by nano-priming to enhance seedling vigor. Biocatal Agric Biotechnol 31, 101923. https://doi.org/10.1016/j.bcab.2021.101923
Benko I, Nagy G, Tanczos B, Ungvari E, Sztrik A, Eszenyi P, Banfalvi G. 2012. Subacute toxicity of nano-selenium compared to other selenium species in mice. Environ Toxicol Chem 31(12), 2812-2820.
Bindraban PS, Dimkpa C, Nagarajan L, Roy A, Rabbinge R. 2015. Revisiting fertilizers and fertilization strategies for improved nutrient uptake by plants. Biol Fertil Soils 51(8), 897-911. https://doi.org/10.1007/s00374-015-1039-7
Brevik E, Omara AE-D, Elsakhawy TA, Amer MM, Abdalla ZF, El-Ramady H, Prokisch J. 2022. The Soil-Water-Plant-Human Nexus: A call for photographic review articles. Environ Biodivers Soil Secur 6, 117–131. https://doi.org/10.21608/JENVBS.2022.145425.1178
Brigger I, Dubernet C, Couvreur P. 2012. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 64, 24-36.
Bunaciu AA, Udriștioiu EG, Aboul-Enein HY. 2015. X-ray diffraction: Instrumentation and applications. Crit Rev Anal Chem 45, 289-299.
Cepoi L, Zinicovscaia I, Chiriac T, Rudi L, Yushin N, Grozdov D, Tarasov K. 2023. Modification of some structural and functional parameters of living culture of Arthrospira platensis as the result of selenium nanoparticle biosynthesis. Materials 16(2), 852.
Das J, Han JW, Choi YJ, Song H, Cho SG, Park C, Kim JH. 2016. Cationic lipid-nanoceria hybrids, a novel nonviral vector-mediated gene delivery into mammalian cells: Investigation of the cellular uptake mechanism. Sci Rep 6(1), 29197.
Djanaguiraman M, Belliraj N, Bossmann SH, Vara Prasad PV. 2018. High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS Omega 3, 2479-2491.
Domokos-Szabolcsy E, Alladalla NA, Alshaal T, Sztrik A, Márton L, El-Ramady H. 2014. In vitro comparative study of two Arundo donax L. ecotypes’ selenium tolerance. Int J Hortic Sci 20(3-4), 119-122.
Domokos-Szabolcsy E, Márton L, Sztrik A, Babka B, Prokisch J, Fári M. 2012. Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotiana tabacum. Plant Growth Regul 68, 525–531.
Domokos-Szabolcsy E. 2011. Biological effect and fortification possibilities of inorganic selenium forms in higher plants. PhD dissertation, Debrecen University.
Dwivedi S, AlKhedhairy AA, Ahamed M, Musarrat J. 2013. Biomimetic synthesis of selenium nanospheres by bacterial strain JS-11 and its role as a biosensor for nanotoxicity assessment: A novel Se-bioassay. PLoS ONE 8, e57404.
El-Badri AM, Batool M, Mohamed IAA, Wang Z, Wang C, Tabl KM, Khatab A, Kuai J, Wang J, Wang B, Zhou G. 2022. Mitigation of the salinity stress in rapeseed (Brassica napus L.) productivity by exogenous applications of bio-selenium nanoparticles during the early seedling stage. Environ Pollut 310, 119815. https://doi.org/10.1016/j.envpol.2022.119815
El-Badri AM, Batool M, Wang C, Hashem AM, Tabl KM, Nishawy E, Kuai J, Zhou G, Wang B. 2021b. Selenium and zinc oxide nanoparticles modulate the molecular and morpho-physiological processes during seed germination of Brassica napus under salt stress. Ecotoxicol Environ Saf 225, 112695. https://doi.org/10.1016/j.ecoenv.2021.112695
El-Batal AI, Sidkey NM, Ismail AA, Arafa RA, Fathy RM. 2016. Impact of silver and selenium nanoparticles synthesized by gamma irradiation and their physiological response on early blight disease of potato. J Chem Pharm Res 8(4), 934-945.
El-Ramady H, Domokos-Szabolcsy E, Abdalla NA, Alshaal TA, Shalaby TA, Sztrik A, Prokisch J, Fári M. 2014. Selenium and nano-selenium in agroecosystems. Environ Chem Lett 12(4), 495-510. https://doi.org/10.1007/s10311-014-0476-0
ElSaied BE, Diab AM, Tayel AA, Alghuthaymi MA, Moussa SH. 2021. Potent antibacterial action of phycosynthesized selenium nanoparticles using Spirulina platensis extract. Green Process Synth 10(1), 49-60.
Flohé L. 2009. The labour pains of biochemical selenology: The history of selenoprotein biosynthesis. Biochim Biophys Acta 1790(11), 1389–1403. https://doi.org/10.1016/j.bbagen.2009.03.031
Fordyce FM. 2005. Selenium deficiency and toxicity in the environment. In Essentials of Medical Geology; Elsevier: London, UK.
Garlapati D, Chandrasekaran M, Devanesan A, Mathimani T, Pugazhendhi A. 2019. Biosynthesis of selenium nanoparticles mediated by fungus Mariannaea sp. HJ and their characterization. Appl Microbiol Biotechnol 103(12), 4709–4721.
Ghanbari F, Bag-Nazari M, Azizi A. 2023. Exogenous application of selenium and nano-selenium alleviates salt stress and improves secondary metabolites in lemon verbena under salinity stress. Sci Rep 13, 5352. https://doi.org/10.1038/s41598-023-32436-4
Gigli M, Fellet G, Pilotto L, Sgarzi M, Marchiol L, Crestini C. 2022. Lignin-based nano-enabled agriculture: A mini-review. Front Plant Sci 13, 976410. https://doi.org/10.3389/fpls.2022.976410
Gomez A, Narayan M, Zhao L, Jia X, Bernal RA, Lopez-Moreno ML, Peralta-Videa JR. 2021. Effects of nanoenabled agricultural strategies on food quality: Current knowledge and future research needs. J Hazard Mater 401, 123385. https://doi.org/10.1016/j.jhazmat.2020.123385
Haghighi M, Abolghasemi R, Teixeira da Silva JA. 2014. Low and high temperature stress affect the growth characteristics of tomato in hydroponic culture with Se and nano-Se amendment. Scientia Hortic 178, 231–240. https://doi.org/10.1016/j.scienta.2014.09.006
Haris M, Hussain T, Mohamed HI, Khan A, Ansari MS, Tauseef A, Khan AA, Akhtar N. 2023. Nanotechnology – A new frontier of nano-farming in agricultural and food production and its development. Sci Total Environ 857(3), 159639. https://doi.org/10.1016/j.scitotenv.2022.159639
Hnain A, Brooks J, Lefebvre DD. 2013. The synthesis of elemental selenium particles by Synechococcus leopoliensis. Appl Microbiol Biotechnol 97(24), 10511–10519.
Huang X, Tang Q, Chen C, Li Q, Lin H, Bai S, Zhao J, Li J, Wang K, Zhu M. 2023b. Combined analysis of transcriptome and metabolome provides insights into nano-selenium foliar applications to improve summer tea quality (Camellia sinensis). LWT 175, 114496. https://doi.org/10.1016/j.lwt.2023.114496
Husen A, Siddiqi KS. 2014. Plants and microbes assisted selenium nanoparticles: Characterization and application. J Nanobiotechnol 12, 1–10.
Joy EJM, Kalimbira AA, Gashu D, Ferguson EL, Sturgess J, Dangour AD, Banda L, Chiutsi-Phiri G, Bailey EH, Langley-Evans SC, et al. 2019. Can selenium deficiency in Malawi be alleviated through consumption of agro-biofortified maize flour? Study protocol for a randomised, double-blind, controlled trial. Trials 20, 795.
Kang L, Wu Y, Zhang J, An Q, Zhou C, Li D, Pan C. 2022. Nano-selenium enhances the antioxidant capacity, organic acids, and cucurbitacin B in melon (Cucumis melo L.) plants. Ecotoxicol Environ Saf 241, 113777. https://doi.org/10.1016/j.ecoenv.2022.113777
Khan MN, Fu C, Li J, Tao Y, Li Y, Hu J, Chen L, Khan Z, Wu H, Li Z. 2023. Seed nanopriming: How do nanomaterials improve seed tolerance to salinity and drought? Chemosphere 310, 136911. https://doi.org/10.1016/j.chemosphere.2022.136911
Kumar HD, Prakash G. 1971. Toxicity of selenium to the blue-green algae, Anacystis nidulans and Anabaena variabilis. Ann Bot 35(3), 697–705.
Kumari P, Saifi MA, Khurana A, Godugu C. 2018. Cardioprotective effects of nanoceria in a murine model of cardiac remodeling. J Trace Elem Med Biol 50, 198-208.
Liang L, Wong SC, Lisak G. 2023. Effects of plastic-derived carbon dots on germination and growth of pea (Pisum sativum) via seed nano-priming. Chemosphere 316, 137868. https://doi.org/10.1016/j.chemosphere.2023.137868
Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC. 2009. Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5(10), 1128–1132.
Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Zink JI. 2008. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5), 889-896.
Liu R, Deng Y, Zheng M, Liu Y, Wang Z, Yu S, Nie Y, Zhu W, Zhou Z, Diao J. 2022. Nano selenium repairs the fruit growth and flavor quality of tomato under the stress of penthiopyrad. Plant Physiol Biochem 184, 126-136. https://doi.org/10.1016/j.plaphy.2022.05.026
Manzoor N, Ali L, Ahmed T, Noman M, Adrees M, Shahid MS, Ogunyemi SO, Radwan KSA, Wang G, Zaki HEM. 2022. Recent advancements and development in nano-enabled agriculture for improving abiotic stress tolerance in plants. Front Plant Sci 13, 951752. https://doi.org/10.3389/fpls.2022.951752
Mastronardi E, Tsae P, Zhang X, Monreal C, DeRosa MC. 2015. Strategic role of nanotechnology in fertilizers: Potential and limitations. In Nanotechnologies in Food and Agriculture, 25-67. https://doi.org/10.1007/978-3-319-14024-7_2
Mistry HD, Broughton Pipkin F, Redman CWG, Poston L. 2012. Selenium in reproductive health. Am J Obstet Gynecol 206(1), 21–30.
Muthusamy G, Thangasamy S, Raja M, Chinnappan S, Kandasamy S. 2017. Biosynthesis of silver nanoparticles from Spirulina microalgae and its antibacterial activity. Environ Sci Pollut Res 24(23), 19459-19464.
Parial D, Gopal PK, Paul S, Pal R. 2016. Gold (III) bioreduction by cyanobacteria with special reference to in vitro biosafety assay of gold nanoparticles. J Appl Phycol 28(6), 3395–3406.
Patel V, Berthold D, Puranik P, Gantar M. 2015. Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep 5, 112–119.
Premarathna HL, McLaughlin MJ, Kirby JK, Hettiarachchi GM, Beak D, Stacey S, Chittleborough DJ. 2010. Potential availability of fertilizer selenium in field capacity and submerged soils. Soil Sci Soc Am J 74(5), 1589-1596. https://doi.org/10.2136/sssaj2009.0416
Price NL, Thompson PA, Harrison PJ. 1987. Selenium: an essential element for growth of the coastal marine diatom Thalassiosira pseudonana (Bacillariophyceae). J Phycol 23(1), 1-9. https://doi.org/10.1111/j.1529-8817.1987.tb04493.x
Pronina NA, Kovshova YI, Popova VV, Lapin AB, Alekseeva SG, Baum RF, Mishina IM, Tsoglin LN. 2002. The effect of selenite ions on growth and selenium accumulation in Spirulina platensis. Russ J Plant Physiol 49(2), 235–241.
Ramamurthy CH, Sampath KS, Arunkumar P, Kumar MS, Sujatha V, Premkumar K, Thirunavukkarasu C. 2013. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst Eng 36(8), 1131–1139.
Saifi A, El-Amiri A, Halloua H, Obbadi A, Errami Y, Sahnoun S, Elhassnaoui A. 2018. Determining the thermal properties of deposits by infrared thermography in the solar thermal energy system piping and the booster heating. In 2018 6th International Renewable and Sustainable Energy Conference (IRSEC) (pp. 1-4). IEEE. https://doi.org/10.1109/IRSEC.2018.8702933
Sami N, Fatma T. 2019. Studies on estrone biodegradation potential of cyanobacterial species. Biocatal Agric Biotechnol 17, 576–582.
Sangomla S, Saifi MA, Khurana A, Godugu C. 2018. Nanoceria ameliorates doxorubicin-induced cardiotoxicity: Possible mitigation via reduction of oxidative stress and inflammation. J Trace Elem Med Biol 47, 53-62.
Servin A, Elmer W, Mukherjee A, De La Torre-Roche R, Hamdi H, White JC, Bindraban PS, Dimkpa CO. 2015. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanoparticle Res 17, 1-21.
Shalaby TA, El-Bialy SM, El-Mahrouk E, Omara AE-D, El-Beltagi HS, El-Ramady H. 2022. Acclimatization of in vitro banana seedlings using root-applied bio nanofertilizer of copper and selenium. Agronomy 12, 539. https://doi.org/10.3390/agronomy12020539
Sharma B, Tiwari S, Kumawat KC, Cardinale M. 2023. Nano-biofertilizers as bio-emerging strategies for sustainable agriculture development: Potentiality and their limitations. Sci Total Environ 860, 160476. https://doi.org/10.1016/j.scitotenv.2022.160476
Sharma S, Kumar A, Choudhary A, Harish BM, Karmakar P, Sharma P, Mehta S. 2022. Recent developments in smart nano-agrochemicals: A promise for revolutionizing present-day agriculture. Mater Today Proc 69, 530-534. https://doi.org/10.1016/j.matpr.2022.09.306
Shelar A, Nile SH, Singh AV. 2023. Recent advances in nano-enabled seed treatment strategies for sustainable agriculture: Challenges, risk assessment, and future perspectives. Nano-Micro Lett 15, 54. https://doi.org/10.1007/s40820-023-01025-5
Shi MT, Zhang TJ, Fang Y, Pan CP, Fu HY, Gao SJ, Wang JD. 2023. Nano-selenium enhances sugarcane resistance to Xanthomonas albilineans infection and improvement of juice quality. Ecotoxicol Environ Saf 254, 114759. https://doi.org/10.1016/j.ecoenv.2023.114759
Sielicki M, Burnham JC. 1973. The effect of selenite on the physiological and morphological properties of the blue-green alga Phormidium luridum var. Olivacea. J Phycol 9(4), 509–514.
Singh R, Wagh P, Wadhwani S, Gaidhani S, Kumbhar A, Bellare J, Chopade BA. 2013. Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int J Nanomedicine 8, 4277.
Smith MI, Westfall BB. 1937. Further field studies on the selenium problem in relation to public health. Public Health Rep 1375-1384.
Song J, Yu S, Yang R, Xiao J, Liu J. 2023. Opportunities for the use of selenium nanoparticles in agriculture. NanoImpact 100478.
Sun Y, Xia Y. 2002. Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601), 2176-2179.
Taha NA, Hamden S, Bayoumi YA, Elsakhawy T, El-Ramady H, Solberg SØ. 2023. Nanofungicides with selenium and silicon can boost the growth and yield of common bean (Phaseolus vulgaris L.) and control Alternaria leaf spot disease. Microorganisms 11(3), 728. https://doi.org/10.3390/microorganisms11030728
Tehrani HAM, Keyhanfar M, Behbahani M. 2020. Synthesis and characterization of algae-coated selenium nanoparticles as a novel antibacterial agent against Vibrio harveyi, a Penaeus vannamei pathogen. Aquaculture 534, 736260.
Tinggi U. 2008. Selenium: Its role as antioxidant in human health. Environ Health Prev Med 13, 102-108.
Touliabah HE, El-Sheekh MM, Makhlof MEM. 2022. Evaluation of Polycladia myrica-mediated selenium nanoparticles (PoSeNPS) cytotoxicity against PC-3 cells and antiviral activity against HAV HM175 (Hepatitis A), HSV-2 (Herpes simplex II), and Adenovirus strain 2. Front Mar Sci 9, 1092343.
Wadhwani SA, Shedbalkar UU, Singh R, et al. 2016. Biogenic selenium nanoparticles: Current status and future prospects. Appl Microbiol Biotechnol 100, 2555–2566. https://doi.org/10.1007/s00253-016-7300-7
Wang H, Zhang J, Yu H. 2007. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: Comparison with selenomethionine in mice. Free Radic Biol Med 42, 1524–1533.
Wang L, Yin J, Yang B, Qu C, Lei J, Han J, Guo X. 2020. Serious selenium deficiency in the serum of patients with Kashin–Beck disease and the effect of nano-selenium on their chondrocytes. Biol Trace Elem Res 194, 96-104.
White JC, Zuverza-Mena N, Elmer WH. 2022. From nanotoxicology to nano-enabled agriculture: Following the science at the Connecticut Agricultural Experiment Station (CAES). Plant Nano Biol 1, 100007. https://doi.org/10.1016/j.plana.2022.100007
World Health Organization. 1987. Environmental Health Criterion 58: Selenium. World Health Organization: Geneva, Switzerland.
Wu H, Li Z. 2022. Nano-enabled agriculture: How do nanoparticles cross barriers in plants? Plant Commun 3(6), 100346. https://doi.org/10.1016/j.xplc.2022.100346
Yang F, Tang Q, Zhong X, Bai Y, Chen T, Zhang Y, Li Y, Zheng W. 2012. Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. Int J Nanomedicine 7, 835.
Zahedi SM, Abdelrahman M, Hosseini MS, Hoveizeh NF, Tran LP. 2019. Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium nanoparticles. Environ Pollut 253, 246–258.
Zhang J, Wang H, Yan X, Zhang L. 2005. Comparison of short-term toxicity between nano-Se and selenite in mice. Life Sci 76(10), 1099-1109.
Zhang JS, Gao XY, Zhang LD, Bao YP. 2001. Biological effects of a nano red elemental selenium. Biofactors 15, 27–38.
Zhang L, Feng C, Chen Z. 2008. Superaligned carbon nanotube grid for high resolution transmission electron microscopy of nanomaterials. Nano Lett 8(8), 2564–2569.
Zhang P, Ma Y, Zhang Z. 2015. Interactions between engineered nanomaterials and plants: Phytotoxicity, uptake, translocation, and biotransformation. Nanotechnol Plant Sci: Nanoparticles Their Impact Plants, 77-99.
Payal Chaurasia, Khushaboo Soni, Preeti Maurya, Sanjay Singh (2024), Selenium nanoparticles: Green synthesis using algae and their potential applications for sustainable agriculture; IJAAR, V25, N3, September, P11-22
https://innspub.net/selenium-nanoparticles-green-synthesis-using-algae-and-their-potential-applications-for-sustainable-agriculture/
Copyright © 2024
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0