Software Simulator Bioprocess (SSBP) to estimate hydrodynamic stress conditions in cell cultures performed in shaking bioreactors
Paper Details
Software Simulator Bioprocess (SSBP) to estimate hydrodynamic stress conditions in cell cultures performed in shaking bioreactors
Abstract
In order to estimate hydrodynamic stress conditions in cultures carried out in shake flasks we used a Software (SSBP). The systematic analysis was performed with mammal cells, plant cells, filamentous molds, protozoa and bacteria; all data were collected from the literature. The parameters more useful for the quantification of hydrodynamic stress was the energy dissipation threshold and critical length eddy. According to these parameters the mammal cell line AGE.1.HM®, Rubia tinctorium, Penicillium purpurogenum, Streptomyces zaomyceticus, bacteria on their capacity to colony forming units (FCU) and Trichoderma harzianum were the most tolerant to hydrodynamic stress in shake flask cultures. In counterpart, erythrocytes, CHO cells, Penicillium citrinum, Ceratocorys horrida and Protoceratium reticulatum were the most susceptible. The use of shear stress and shear rate to compare hydrodynamic stress, at least in shake flask cultures, cannot be useful when compares different biological systems. In this context, the Kolmogoroff theory, neither applied at all in shaking bioreactors. Finally, the highest exposition to hydrodynamic stress in terms of the maximum drop diameter in shake flask cultures corresponds to protozoan Protoceratium reticulatum, Lactococcus lactis, mammal cell line AGE.1.HM, mollusk larvae Dreissena polymorpha and Rubia tinctorium although with great exposition differences to energy dissipation thresholds.
Akhavan-Sepahy A, Jabalamel L. 2011. Effect of culture conditions on the production of an extracellular protease by Bacillus sp. Isolated from soil sample of Lavizan Juangle Park, Enzyme Research 11, 1-7. http://dx.doi.org/10.4061/2011/219628
Ayazi-Shamlou P, Makagiansar H, Ison H, Lilly M, Thomas C. 1994. Turbulent breakage of filamentous microorganism in submerged culture in mechanically stirred bioreactors, Chemical Engineering Science 49, 2621-2631. http://dx.doi.org/10.1016/0009-2509(94)E0079-6
Balandras W, Olmos E, Hecklau C, Blanchard F, Guedon E, Marc A. 2011. Growth and death kinetics of CHO cells cultivated in continuous bioreactor at varios agitation rates, BMC Proceedings 5, 101. http://dx.doi.org/10.1186/1753-6561-5-S8-P101
Büchs J, Maier U, Milbradt C, Zoels B. 2000b. Power consumption in shaking flasks rotary machines; II. Nondimensional description of specific power consumption and flow regimes in unbaffled flasks at elevated liquid viscosity, Biotechnology and Bioengineering 68, 594-601. http://dx.doi.org/10.1002/(SICI)10970290(20000620)68
Büchs J, Maier U, Zoels B. 2000a. Power consumption in shake flasks at low viscosity, Biotechnology & Bioengineering 68, 589-593. http://dx.doi.org/10.1002/(SICI)10970290(20000620)68
Büchs J, Zoels B. 2001. Evaluation of maximum to specific power consumption ratio in shaking bioreactors. Journal of Chemical Engineering of Japan 34, 647-653. http://doi.org/10.1252/jcej.34.647
Busto VD, Calabró-López A, Rodríguez-Talou J, Giulietti AM, Merchuk JC. 2013. Anthraquinones production in Rubia tinctorum cell suspension cultures: down scale of shear effects. Biochemical Engineering Journal 77, 119–128 http://dx.doi.org/119-128. 10.1016/j.bej.2013.05.013
Cull SG, Lovick JW, Lye GC, Angeli P. 2002. Scale-down studies on the hydrodynamics of two-liquid phase biocatalytic reactors, Bioprocess and Biosystems Engineering 25, 143-153. http://dx.doi.org/10.1007/s00449-002-0281-1
Chattopadhyay S, Srivastava AK, Bhojwani S, Bisaria V. 2001. Development of suspension culture of Podophyllum hexadrun for the production of podophyllotoxin, Biotechnology Letters 23, 2063-2066. http://dx.doi.org/10.1023/A:1008138230896
Chisti Y. 2001. Hydrodynamic damage to animal cells, Critical Reviews in Biotechnology 21, 67-110. http://dx.doi.org/10.1080/20013891081692
Choi DB, Tamura S, Park YS, Okabe M, Seriu Y, Takeda S. 1996. Efficient tylosin production from Streptomyces fradiae using rapeseed oil, Journal of Fermentation and Bioengineering 82, 183-186. http://dx.doi.org/10.1016/0922-338x(96)85047-1
Dunlop HE, Pradyumma K, Namdev K. 1996. Effect of the fluid forces on plant cell suspension, Chemical Engineering Science 49, 2263-2276. http://dx.doi.org/10.1016/0009-2509(94)E0043-P
El Enshasy HA. 2007. Bioprocess development for the production of α-amylase by Bacillus amyloliquefaciens in batch and fed-batch cultures, Research Journal of Microbiology 2, 560-568. http://dx.doi.org/10.3923/jm.2007.560.568
Gamboa-Suasnavart R, Palacios-Luz, Martínez-Sotelo J, Espitia C, Servin-González L, Valdez-Cruz N, Trujillo-Roldán M. 2013. Scale-up from shake flasks to bioreactor, based on power input and Streptomyces lividans morphology, for the production of recombinant AP (45/47 kDa protein) from Mycobacterium tuberculosis, World Journal of Microbiology and Biotechnology 29, 1421-1429. http://dx.doi.org/10.1007/s11274-013-1305-5.
García-Camacho F, Gallardo-Rodriguez J, Sánchez-Miron A, Cerón-Gracía M, Belarbi E, Molina-Grima E. 2007. Determination of shear stress tresholds in toxic dinoflagellates cultured in shake flasks implications in bioprocess engineering, Process Biochemistry 42, 1506-1515. http://dx.doi.org/10.1016/j.procbio.2007.08.001
Garcia-Ochoa F, Gomez E, Alcon A, Santos VE. 2012. The effect of hydrodynamic stress on growth of Xanthomonas campestris cultures in a stirred and sparged tank bioreactor, Bioprocess and Biosystems Eng. 36, 911-925. http://dx.doi.org/10.1007/s00449-012-0825-y.
Gomaa MO, El Bialy AH. 2009. Pellet morphology, broth rheology and statin production in submerged cultures of P. citrinum, Global Journal of Biotechnology & Biochemistry 4, 75-83.
Horvath TG, Crane L. 2010. Hydrodynamic forces affect larval zebra mussel (Dreissena polymorpha) mortality in a laboratory setting, Aquatic Invasions 5, 379-385. http://dx.doi.org/10.3391/ai.2010.5.4.07
Ibrahim D, Weloosamy H, Sheh-Hong L. 2015. Effect of agitation speed on the morphology of Aspergillus niger HFDSA-1 hyphae and its pectinase production in submerged fermentation, World Journal of Biological Chemistry 6, 265-271. http://dx.doi.org/10.4331/wjbc.v6.i3.265.
Ibrahim SB, Abdul-Rahman N, Mohamad R, Abdul-Rahim R. 2010. Effects of agitation speed, temperature, carbon and nitrogen sources on the growth of recombinant Lactococcus lactis NZ9000 carrying domain 1 of aerolysin gene, African Journal of Biotechnology 9, 5392-5398. http://dx.doi.org/10.3391/ai.2010.5.4.07
Jones AM, Porter MA. 1998. Vegetable oils in fermentation: Benefical effects of low-level supplementation, Journal of Industrial Microbiology and Biotechnology 2, 203-207. http://dx.doi.org/10.1038/sj.jim.2900571
Kieran PM, Malone DM, Macloughlin PF. 2000. Effects of hydrodynamic and interfacial forces on plant cell suspension systems, Advances in Biochemical Engineering/Biotechnology 67, 139-177. http://dx.doi.org/10.1007/3-540-47865-5_5
Klöckner W, Büchs J. 2012. Advances in shaking technologies, Trends in Biotechnology 30, 307-314).
Madda S. 2009. Investigations on the production, purification and characterization of medicinally important L-asparaginase enzyme using a newly isolated bacterial species, Ph. D. Thesis. Jawaharlal Nehrv Technological University, India 79 P.
Mohd-Rusli F, Shamzi-Mohamed M, Mohamad R, Tri-Puspaningsih NN, Ariff AB. 2009. Kinetics of xilanase fermentation by recombinant Esceherichia coli DHSα in shake flasks cultures, American Journal of Biochemistry and Biotechnology 5, 110-118. http://dx.doi.org/10.3844/ajbbsp.2009.110.118
Morales-Oyervides L. 2015. Oxygen transfer rate effect on pigment production by Penicillium purpurogenum GH2 in shake flakss cultures. AIChE Annual Meeting, November 9-13th, Salt Lake City, UT,
Naik G, Shukla S, Mall R, Kumar-Mishra S. 2015. Optimization of culture conditions of Streptomyces zaomyceticus RC 2073 by shake flasks method, European journal of biomedical & pharmaceutical sciences 2, 620-629.
Peter C, Suzuki Y, Büchs J. 2006. Hydromechanical stress in shake flasks: Correlation for the maximun local energy dissipation rate, Biotechnology & Bioengineering 93, 1164-1176. http://dx.doi.org/10.1002/bit.20827
Platas OB, Sandig V, Pörtner R, Zeng A. 2013. Evaluation of process parameters in shake flasks for mammalian cell culture. BMC Proceedings, 7 (Suppl): P17. From 23rd European Society for Animal Cell Technology (ESACT) Meeting: Better Cells for Better Health Lille, France. 23-26 June 2013.
Purwanto LA, Ibrain D, Sudrajat H. 2009. Effect of agitation speed on morphological changes in Aspergillus niger hyphae during production of tannase, World Journal of Organic Chemistry 4, 34-38. http://dx.doi.org/10.4331/wjbc.v6.i3.265
Prokop A, Bajpai R. 1992. The sensitivity of biocatalysts to hydrodynamic shear stress, Advances in Applied Microbiology 37, 165-232. http://dx.doi.org/10.1016/S0065-2164(08)70255-7
Reyes A, Peña C, Galindo E. 2003. Reproducing shake flasks performance in stirred fermentors: production of alginates by Azotobacter vinelandii, Journal of Biotechnology 105, 189-198. http://dx.doi.org/10.1016/S0168-1656(03)00186-X
Reyes C, Terron K, Barrales-Cureño HJ, Chávez-Salinas S, López-Valdez LG. 2015. Diseño de un software para el desarrollo y optimización de bioprocesos. XVI Congreso Nacional de Biotecnología y Bioingeniería, June 21-26, Guadalajara Jalisco, México.
Rocha-Valadez J, Estrada M, Galindo E, Serrano-Carreón L. 2006. From shake flasks to stirred fermentors: Scale up of an extractive fermentation process for 6-pentyl-α-pyrone production by Trichoderma harzianum using volumetric power input, Process Biochemistry 41, 1347-1452. http://dx.doi.org/10.1016/j.procbio.2006.01.013
Sakil-Munna M, Tamanna S, Rumana-Afrin A, Ara-Sharif G, Mazumber C, Sarker-Kana K, Jahan-Urmi N, Aftab-Uddin M, Rahman T, Noor R. 2014. Influence of aeration speed on bacterial colony forming unit (UFC´s) formation capacity, American Journal of Biochemistry and Biotechnology 1, 47-50. http://dx.doi.org/10.12691/ajmr-2-1-7
Shukla NK, Parasu Veera U, Kulkarni PR, Pandit AB. 2001. Scale-up of biotransformation process in stirred tank reactor using dual impeller bioreactor, Biochemical Engineering Journal 8, 19-29. http://dx.doi.org/10.1016/S1369-703X(00)00130-3
Singh M, Chaturvedi R. 2012. Evaluation of nutrient uptake and physical parameters on cell biomass growth and production of spilanthol in suspension cultures of Spilanthes acmella Murr. Bioprocess and Biosystems Engineering 35, 943-951. http://dx.doi.org/10.1007/s00449-012-0679-3
Tahir A, Hifsa-Roodi H, Aziz-Mughal T. 2012. Biosynthesis of Zn batritracin by Bacillus licheniformis under submerged fermentation using wheat bran, Journal of Applied Pharmaceutical Science 1, 498-510.
Thomas C. 1990. Problems of shear in biotechnology, in: Problems Biotechnol. M. Winkler (Ed.), Elsevier Sci. Pub. England, 25-93.
Thomas CR, Al-Rubeai M, Zhang Z. 1994. Prediction of mechanical damage to animal cells in turbulence, Cytotechnology 15, 329-335. http://dx.doi.org/10.1007/BF00762408
Trujillo-Roldán M, Valdez-Cruz N, Gonzalez-Monterubio C, Acevedo-Sánchez E, Martínez-Salinas C, García-Cabrera R, Gamboa-Suasnavart R, Marín-Palacio L, Villegas J, Blancas-Cabrera A. 2013. Scale-up from shake flasks to pilot-scale production of the plant growth-promoting bacterium Azospirillum brasilense for preparing a liquid inoculant formulation, Applied Microbiology and Biotechnology 97, 9665-9674. http://dx.doi.org/10.1007/s00253-013-5199-9
Van Suidjam J, Metz B. 1981. Influence of engineering variables upon the morphology of filamentous molds, Biotechnology & Bioengineering 23, 111-148. http://dx.doi.org/10.1002/bit.260230109
Vanavil B, Perumalsamy M, Rao S. 2014. Studies on the effects of bioprocess parameters and kinetics of rhamnolipids production by P. aeruginosa NITT 6L. Chemical and Biochemical Engineering Quarterly 28, 383-390. http://dx.doi.org/10.15255/CABEQ.2013.1801
Venkatadri R, Irvine RL. 1990. Effect of agitation on ligninase activity and ligninase production by Phanerochaete chrysosporium, Applied and Environmental Microbiology 56, 2684-2691.
Yanpaisan W, King NJC, Doran PM. 1998. Analysis of cell cycle activity and population dynamics in heterogeneous plant cell suspensions using flow cytometry, Biotechnology & Bioengineering 58, 515-528. http://dx.doi.org/10.1002/(SICI)10970290(19980605)58:5
Zainul Abidin SNZ, Anuar N. 2011. Comparison of the production of recombinant protein in suspension culture of CHO cells in spinner flasks and shake flasks system. IIUM Engineering Journal 12, 43-49.
Zhang Z, Chisti Y, Moo-Young M. 1995. Effects of the hydrodynamic environment and shear protectants on survival of erythrocytes in suspension, Journal of Biotechnology 43, 33-40. http://dx.doi.org/10.1016/0168-1656(95)00111-8
Zhang H, William-Dalson W, Keshavars-Moore E, Shamlow PA. 2005. Computational-fluid dynamics (CFD) analysis of mixing and gas-liquid mass transfer in shake flasks, Biotechnology and Applied Biochemistry 41, 1-8. http://dx.doi.org/10.1042/BA20040082
Zirbel MJ, Veron F, Latz I. 2000. The reversible effect of flow on the morphology of Ceratocorys horrida (Peridinialis, Dinophyta), Journal of Phycology 36, 36-58 http://dx.doi.org/10.1046/j.1529-8817.2000.98088.x
César Reyes Reyes, Hebert Jair Barrales-Cureño, Petra Andrade Hoyos, Alfonso Luna-Cruz, Ketzasmin Armando Terrón-Mejía, Luis Germán López-Valdez, Leticia Mónica Sánchez-Herrera, Juan Antonio Cortes-Ruíz, María Carmina Calderon-Caballero, Jordi Orlando González Osuna, Salvador Chávez-Salinas (2017), Software Simulator Bioprocess (SSBP) to estimate hydrodynamic stress conditions in cell cultures performed in shaking bioreactors; IJB, V10, N3, March, P143-156
https://innspub.net/software-simulator-bioprocess-ssbp-to-estimate-hydrodynamic-stress-conditions-in-cell-cultures-performed-in-shaking-bioreactors/
Copyright © 2017
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0