Some changes in germination and morphological traits of black seed under different soil types and common bean densities

Paper Details

Research Paper 01/05/2013
Views (686)
current_issue_feature_image
publication_file

Some changes in germination and morphological traits of black seed under different soil types and common bean densities

Soheila Porheidar Ghafarbi, Sirous Hassannejad, Ramin Lotfi
J. Biodiv. & Environ. Sci. 3(5), 31-35, May 2013.
Copyright Statement: Copyright 2013; The Author(s).
License: CC BY-NC 4.0

Abstract

A split-factorial experiment on the basis of randomize complete block design with three replications was conducted in 2012, to assess the effects of different common bean (Phaseolus vulgaris L.) densities (0, 1, 2 and 4 per pot) and soil types (soil of wheat and barley fields) on some changes in germination and morphological traits of black seed (Nigella sativa L.). Results indicated that with increasing common bean density in soil of barely field, shoot length of black seed was significantly decreased. However, the lowest shoot length of black seed in soil of wheat field was obtained from the control density of common bean. In both of soil type day up to flowering of black seed was increased with increasing density of common bean. Maximum shoot dry weight and pod number of black seed in soil of barley and wheat fields was recorded under 2 and control density of common bean, respectively. Interaction of soil type and black seed density showed that the most shoot dry weight and day up to germination (germination rate) under barely soil was recorded in 2 densities of black seed. But, under wheat soil, those traits were obtained from 3 and 0 (control) densities. Pod number of black seed with increasing of this plant density was significantly declined.

Atta MB. 2003. Some characteristics of nigella (Nigella sativa L.) seed cultivated in Egypt and its lipid profile. Food Chemistry 83, 63–68.

Buruchara R. 2007. Background information on common bean (Phaseolus vulgaris L.) inbiotechnology, breeding and seed systems for African crops.

Economou GO, Tzakou A, Gani A, Yannitsar O,Bilalis D. 2002. Allelopathic effect of Conyzaalbida. Ecology 17, 2021-2034.

FAO.2005. http://faostat.fao.org/

Hassannejad S, PorheidarGhafarbi S, Lotfi R. 2013. Allelopathic effects of wheat and barley on emergence and seedling growth of some weed species. International Journal of Biosciences 3, 128-134.

Hemss HD, Van J. 1985. The influence of competition on crop yield.Agriculture Systems 18, 81-93.

Kruse M, Strandberg M, Strandberg B. 2000.Ecological Effects of Allelopathic Plants–A Review. National Environmental Research Institute – NERI Technical Report No. 315. Silkeborg, Denmark.

Liu DL, Lovett JV. 1993. Biologically active secondary metabolites of barley. II. Phytotoxicity of barley allelochemicals. Journal of Chemical Ecology 19, 2231-2244.

Nazir T, Uniyal AK, Todari NP. 2007. Allelopathicbehaviour of three medicinal plant species on traditional agriculture crops of Garhwal Himalaya, Indian Agroforestry System 69, 183-187.

Porheidar-Ghafarbi S, Hassannejad S,Lotfi R. 2012 a. Allelopathic Effects of Wheat seed extracts on seed and seedling growth of eight selected weed species. International Journal of Agriculture and Crop Sciences 4, 1452-1457.

Porheidar-Ghafarbi S, Hassannejad S, Lotfi R. 2012 b. Seed to Seed Allelopathic Effects between Wheat   and   Weeds.   International   Journal   of Agriculture and Crop Sciences 4, 1660-1665.

Rice  EL.  1984.  Allelopathy,  2nd  Ed.  Academic Press, New York. 421p.

Turk MA, TawahaAM. 2002. Inhibitory effects of aqueous  extracts  of  barley  on  germination  and growth of lentil. Pakistan Journal of Agronomy 1, 28-30.

Xuan TD, Tawata S, Hong NH, Khanh TD, Chung IM. 2004. Assessment of phytotoxic action of  Ageratum  conyzoides  L.(billy  goat  weed)  on weeds. Crop Protection 23, 915–922.

Related Articles

Heterosis breeding, general and specific combining ability and stability studies in pearl millet: Current trends

Ram Avtar, Krishan Pal, Kavita Rani, Rohit Kumar Tiwari, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 117-124, August 2025.

Combining ability, heterosis and stability for yield and fibre quality traits in cotton: Breeding approaches and future prospects

Rohit Kumar Tiwari, Krishan Pal, R. P. Saharan, Ram Avtar, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 109-116, August 2025.

Bridging the COPD awareness gap in marginalized populations: Findings from a multicentre study in Khalilabad, Sant Kabir Nagar, Uttar Pradesh, India

Anupam Pati Tripathi, Jigyasa Pandey, Sakshi Singh, Smita Pathak, Dinesh Chaudhary, Alfiya Mashii, Farheen Fatima, J. Biodiv. & Environ. Sci. 27(2), 97-108, August 2025.

Antioxidant and anti-inflammatory activity of Pleurotus citrinopileatus Singer and Pleurotus sajor-caju (Fr.) Singer

P. Maheswari, P. Madhanraj, V. Ambikapathy, P. Prakash, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(2), 90-96, August 2025.

Mangrove abundance, diversity, and productivity in effluent-rich estuarine portion of Butuanon River, Mandaue City, Cebu

John Michael B. Genterolizo, Miguelito A. Ruelan, Laarlyn N. Abalos, Kathleen Kay M. Buendia, J. Biodiv. & Environ. Sci. 27(2), 77-89, August 2025.

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.

Conservation and trade dynamics of non-timber forest products in local markets in south western Cameroon

Kato Samuel Namuene, Mojoko Fiona Mbella, Godswill Ntsomboh-Ntsefong, Eunice Waki, Hudjicarel Kiekeh, J. Biodiv. & Environ. Sci. 27(2), 58-69, August 2025.

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.