Structure and determinism of phytoplankton of the Bandama River in the Marahoué region (West-central, Côte d’Ivoire)

Paper Details

Research Paper 10/05/2024
Views (70) Download (9)
current_issue_feature_image
publication_file

Structure and determinism of phytoplankton of the Bandama River in the Marahoué region (West-central, Côte d’Ivoire)

Ako Djiproh Marie-michael, Niamien-Ebrottie Julie Estelle, Koffi Ahoutou Mathias, Kouame Kouamé Martin, Boussou Koffi Charles
J. Bio. Env. Sci.24( 5), 71-79, May 2024.
Certificate: JBES 2024 [Generate Certificate]

Abstract

The high anthropogenic pressure Bandama River is undergoing is relatively of concern. Considering that the aforementioned actions could constitute a factor of imbalance in the functioning of the ecosystem, this study was carried out with the aim of determining the effect of anthropogenic pressure on the phytoplankton community. We analyzed the spatial variation of phytoplankton biovolume and its relationship with abiotic factors by sampling in six stations established on the two mains tributaries of Bandama river once a month from October 2019 to August 2020. The results showed that except dissolved oxygen, conductivity and water depth, the other physicochemical parameters did not vary significantly from one station to another. The total biovolume was dominated by the phyla of Chlorophyta 2.81.107mm3/L, Charophyta and Euglenozoa 1.63.107mm3/L and 1.53.107mm3/L respectively. The lowest average biovolume (5.34.104±3.67.104mm3/L) was determined at station S6 and the highest (3.15.105±3.03.105mm3/L) at the station of lake Kossou upstream of the dike (S1). Station S6, which is located at the confluence of the two arms of Bandama river although having the lowest biovolume, presents the greatest regularity and stability of phytoplankton communities. From the redundancy analysis (RDA), it appears that the largest biovolumes are weakly linked to the high concentrations of nitrogen, phosphorus, nitrate and nitrite in the environment. However, the transparency of the water and the dissolved oxygen are the factors discriminating the quantity of biomass. Phytoplankton, although having environmental preferences, this study made it possible to establish a negative correlation between a high phytoplankton biomass and the concentration salts.

VIEWS 19

Adon MP, Niamien -Ebrottie JE, Konan KF, Azah CN, Ouattara A, Gourene G. 2017. Qualité des eaux du Bandama-blanc (Côte d’Ivoire) et de ses affluents soumis à de fortes activités anthropiques à partir de la microflore algale. Agronomie Africaine 29(2), 159-175.

AFNOR. 2006. Norme guide pour le dénombrement du phytoplancton par microscopie inversée (méthode Utermöhl) – NF EN 15204. 39p.

Avit JBLF, Pédia PL, Sankaré Y. 1999. Diversité biologique de la Côte d’Ivoire. Rapport de synthèse. Ministère de l’Environnement L. Krienitz, G. Gärtner, M. Schagerl (Eds.), Sübwasserflora von Mittelleuropa, 19 (2), 1- 759.

Blinda M. 2007. Pollution tellurique du littoral nord-ouest du Maroc entre Tanger et Tétouan : caractérisation, impact sur l’environnement et proposition de solutions [Land pollution of the northwest coastline of Morocco between Tangier and Tetouan: Characterisation, impact on the environment and proposed solutions]. PhD Thesis. Rabat. University of Mohammed V pp. 75.

Bourrelly P. 1981. Les algues d’eau douce. Initiation à la systematique. Tome II. Les algues jaunes et brunes : Chrysophycées, Phéophycées, Xantophycées et Diatomées. Société nouvelle des éditions Boubée, Paris (France), 517 p.

Bourrelly P. 1990. Les algues d’eau douce. Initiation à la systématique. Tome I: Les algues vertes. 2è edition, Société nouvelle des éditions Boubée, Paris (France): 1-572.

Bourrelly P. 1985. Les Algues d’eau douce.  Tome III : Les Algues bleues et rouges. Les Eugléniens, Péridiniens et Cryptomonadines. Société nouvelle des éditions Boubée, Paris, 606p.

Compère P. 1974. Algues de la région du lac Tchad. II: Cyanophycées. Cahiers O.R.S.T.O.M., série Hydrobiologie 8 (3/4), 165-198.

Compère P. 1975. Algues de la région du lac Tchad. III: Rhodophycées, Euglénophycées, Cryptophycées, Dinophycées, Chrysophycées, Xanthophycées. Cahiers O.R.S.T.O.M., série Hydrobiologie 9 (3), 167-192.

Compère P. 1977. Algues de la région du lac Tchad. VII: Chlorophycophytes (3ième partie : Desrnidiées) (I). Cahiers O.R.S.T.O.M., série Hydrobiologie 11 (2), 77-177.

Couté A, Bernard C. 2001. Les cyanobactéries toxiques. In : Toxines d’algues dans l’alimentation. Ifremer, Brest (Biélorussie) : 21-37.

Couté A, Chauveau O. 1994. Algae. Encyclopaedia Biospeologica I. Edition Société de Biopédologie: 371-380.

Gábor Borics, Vérone Lerf, Enikő T-Krasznai, Igor Stanković, Levente Pickó, Viktória Béres, Gábor Várbíró. 2021. Calculs de biovolume et de surface pour les microalgues, à l’aide de modèles 3D réalistes. Science of the Total Environment 773 (2021), 145538.

John DM, Whitton BA, Brook AJ. 2011. The freshwater algal flora of the British Isles: an identification guide to freshwater and terrestrial algae. Second Edition. Cambridge University Press. 878 p.

Komárek J, Anagnostidis K. 2000. Cyanoprokaryota-1. Teil: Chroococcales Berlin: Spektrum Akademischer Verlag Heidelberg; ISBN 3-8274-0890-3p.

Komárek J, Anagnostidis K. 2005. Cyanoprokaryota 19/2. teil: Oscillatoriales. Elsevier GmbH 759p.

Konan KF, Bony KY, Adon MP, Potgieter J. 2015. Hydrobiological study of the Bandama Basin in Yaoure Gold Project’s Area of Influence (Yaoure Gold Project, Côte d’Ivoire). Study report – Amara Mining Côte d’Ivoire SARL / Cabinet AMEC Foster Wheeler /Cabinet 2D Consulting Afrique, 99p.

Laplace TC, Barbe J, Dutartre A, Druart JC, Rimet F, Anneville O. 2009. Protocole standardisé d’échantillonnage, de conservation, d’observation et de dénombrement du phytoplancton en plan d’eau pour la mise en œuvre de la DCE : version 3.3.1. Cemagref, 44p.

Laplace TC, Derot J, Morin S, Tison JR. 2019. Bioindication d’état et de fonctionnement en plan d’eau : Utilisation des traits morpho-fonctionnels du phytoplancton pour définir des métriques de diagnostic Rapport final. IRSTE 79pp.

Lozo RN, Berté S, Ouattara NI, Kouamélan EP. 2019. Variation spatio-saisonnière des paramètres physico-chimiques des eaux du fleuve Bandama (Côte d’Ivoire) Revue de l’Environnement et de la Biodiversité -Pasres 4 (1), 34-43.

Lozo N, Berté S, Komoé K,Yao S, Kouamélan P. 2013. Bacillariophyceae (Heterokontophyta) from Bandana River in Côte d’Ivoire, West Africa. Journal of animal & plant sciences 20 (2), 3113 -3121.

Riquier J, Piégay H, Sulc MM. 2015.  Hydromorphological conditions in eighteen restored floodplain channels of a large river: Linking patterns to processes. Freshwater Biology 60, 1085-1103.

Rodier J. 1984. L’analyse de l’eau : Eaux naturelles, eaux résiduaires, eaux de mer. Chimie, physico-chimie, bactériologie, biologie. Édition Dunod Paris, (1984) 1356p.

Soro TA, Silué KD, Gogbé ZM, Coulibaly L,  Gooré BG. 2021. Paramètres physico-chimiques des eaux du bassin du Haut-Bandama (Côte d’Ivoire). Synthèse: Revue des Sciences et de la Techonologie 1, 33-48.

Utermöhl H. 1958. Zur Ver vollkommnung der quantitativen Phytoplankton-methodik. Internationale Vereinigung Fuertheoretische Undeamgewandte Limnologie 9, 1-39.

Tshibanda JB, Malumba AM,  Mpiana TP, Crispin K Mulaji, Jean-Paul Otamonga JP, Poté WJ. 2021. Influence of watershed on the accumulation of heavy metals in sediments of urban rivers under tropical conditions: Case of N’djili and Lukaya rivers in Kinshasa Democratic Republic of the Congo. Watershed Ecology and the Environment 3, 30–37.

Yao Y, Vanderkelen I, Lombardozzi D, Swenson S, Lawrence D, Jägermeyr J, Grant L, Thiery W. 2022. Implementation and evaluation of irrigation techniques in the Community Land Model. Journal of Advances in Modeling Earth Systems 14(12), e2022MS003074. DOI: 10.1029/2022MS003074.

Koné N, Amalan Sylvie N’da AS, Kien KB, Boguhé GFDH, Berthé S. 2022. Caractérisation physico-chimique des eaux du lac du barrage hydroélectrique de Kossou, fleuve Bandama, Côte d’Ivoire. Revue Ivoirienne des Sciences et Technologie. 39, 55 – 69.

Padial JM, Grant T, Frost D. 2014. Molecular systematics of terraranas (Anura: Brachycephaloidea) with anassessment of the effects of alignment and optimality criteria. Zootaxa 3825 (1), 1–132. http://dx.doi.org/10.11646/zootaxa.3825.1.1.

Tian RC, Vézina AF, Legendre L, Ingéram RG. 2000. Effects of pelagic food-web interactions and nutrient remineralization on the biogeochemical cycling of carbon: a modeling approach. Deep-Sea Res II 47, 637–662.