Study of the antibacterial and antioxidant properties of essential oils of plants Cymbopognon citratus (Poaceae), Ocimum gratissimum (Lamiaceae) and Zingiber officinale (Zingiberaceae) consumed in Gabon

Paper Details

Research Paper 01/03/2021
Views (348) Download (52)
current_issue_feature_image
publication_file

Study of the antibacterial and antioxidant properties of essential oils of plants Cymbopognon citratus (Poaceae), Ocimum gratissimum (Lamiaceae) and Zingiber officinale (Zingiberaceae) consumed in Gabon

Hourfil-Gabin Ntougou Assoumou, Aymard Digaye, Gontran Nsi Akoue, Pierre Philippe Mbehang Nguema, Prosper Edou Engonga
Int. J. Micro. Myco.12( 3), 20-28, March 2021.
Certificate: IJMM 2021 [Generate Certificate]

Abstract

Most food products are perishable in nature and require protection against lipid oxidation and antimicrobial spoilage during preparation, storage and distribution. Our work therefore consists in studying these two activities from three plants, C. citratus, O. gratissimum and Z. officinale, widely consumed in Gabon, with the aim of improving the qualities of food preservation, in this case fermented milk: the Milk of Canaan. The plant material for the study consists of the leaves of C. citratus (Poaceae) and O. gratissimum (Lamiaceae), and the rhizomes of Z. officinale (Zingiberaceae). Hydrodistillation is a simple extraction method that was used following the model adapted from Clevenger. The culture and identification of Canaan Milk bacteria strains were performed on culture media, such as agar, EMB, Soja Tryptique and Muller Hilton. Antibacterial tests were carried out using the disc method. The antioxidant activity was evaluated by measuring the reduction possibility of antioxidants in the presence of DPPH (2,2’diphenyl-1-picrylhydrazyl). The extraction yield and color of the EOs of C. citratus is light yellow in color and obtained the best yield, i.e. 0.67% (± 0.07), followed by the EO of gratissimum, colorless, i.e. 0.65% (± 0.05). The lowest yield is that of Z. officinale, light yellow in color, or 0.12% (± 0.007). We see a purple stain under the microscope, so we have Gram + bacteria. The test on the “api staph” gallery reminds us of an enterobacterium, in particular Micrococcus spp, among lactic acid bacteria. The results show that HE O. gratissimum has a larger inhibition diameter than C. citratus and Z. officinale. The diameters are respectively 35; 25 and 20mm. In view of these results, we can be allowed to think that these three essential oils are good natural preservatives of food and more specifically of dairy products such as yogurt / Canaan milk. In particular C. citratus and O. gratissimum which show good results of the antibacterial test.

VIEWS 43

Amari Sihem. 2016. Étude phytochimique et évaluation de l’activité antibactérienne et antioxydante de deux extraits de la plante Zingiber officinale. Mémoire Master En Sciences Biologiques p. 40-43.

Benkeblia N. 2004. Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum). Food Science and Technology 37(2), 263-268.

Bouchet N, Barrier L, Fauconneau B. 1998. Radical scavenging activity and antioxydant property of tannins from Guiera senegalensis (Combretaceae), Phytoth. Res 12, 159-162.

Bozin B, Mimica Dukic N, Samojlik I, Jovin E. 2007. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus offinalis L. and Salvia officinalis L. Lamiaceae) essential oil. J. Agric. Food Chem 55, 78-79.

Cornwell DG, Jones KH, Jiang Z, Lantry LE, Southwell KP, and Kohar I. 1998. Cytotoxicity of tocopherols and their quinones in drug-sensitive and multidrug-resistant leukemia cells. Lipids 33, 295-301.

Duraffourd C, D’Hervicourt L, Lapraz JC. 1990. Cahiers de phytothérapie clinique. 1. Examens de laboratoires galénique. Eléments thérapeutiques synergiques. 2ème éd. Masson, Paris.

Hyldgaard M, Mygind T, Meyer RL. 2012. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology 3, 1-24.

Karousou R, Koureas DN, Kokkini S. 2005. Essential oil composition is related to the natural habitats: Coridothymus capitatus and Satureja thymbra in NATURA 2000 sites of Crete. Photochemistry 66, 2668-2673.

Kim KS, Lee S. 2003. Anti-oxidant activities of the extracts from the herbs of Artemisia apiacea, Jour. Ethnoph 85, 69-72.

Kouamé-Bi KFP. 2012. Valorisation de quatre plantes médicinales Ivoiriennes: étude phytochimique. Thèse de doctorat, chimie organique, Université de Nantes et de l’Université de Cocody-Abidjan. 180

Kporou KE, Coulibaly I, Rodica P, Pintea A, Ouattara S, Odagiu A. 2017. HPLC Phenolic Compounds Analysis and Antifungal Activity of extract’s from Cymbopogon citratus (DC) Stapf against Fusarium graminearum and Fusarium oxysporum sp tulipae, Jour. Sc. Res. Rep 15(1), 1-11.

Matuci-Péreira CA, Ferreira-Maia J. 2007. Study of the antioxidant activity and essential oil from wild basil (Ocimum gratissimum L,) leaf, Cienc. Tecnol. Aliment 27, 624.

Pflug I, Gould GW. 2000. The Microbiological Safety and Quality of Food, Heat Treatment. In B. M. Lund A. Baird-Parker and G.M. Gould (Eds.). Maryland: Aspen Publishers Inc pp. 36-64.

Rajkovic A, Smigic N, Devlieghere F. 2010. Contemporary strategies in combating microbial contamination in food chain. International Journal of Food Microbiology 141, S29-S42.

René D. 2016. Incidence des plantes régénérées in vitro sur les huiles essentielles de deux espèces de Ocimum cultivées au Bénin. Journal of Applied Biosciences Vol. 99.

René G Degnon, Abed-Négo, Euloge Faton, Adjou, Edwige Ahoussi-Dahouenon, Soumanou Mohamed, Dominique KC Sohounhloue. 2013. Efficacité comparée des huiles essentielles de deux plantes aromatiques dans la conservation post-fumage du Chinchard (Trachurus trachurus). Journal of Animal and Plant Sciences 19(1), 2831-2839.

Ruberto G, Baratta MT. 2000. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chemistry  69, 167-174.

Russo M, Galletti GC, Bocchini P, Carnacini A. 1998. Essential oil chemical composition of wild populations of Italian oregano spice (Origanum vulgare ssp. hirtum (Link): a preliminary evaluation of their use in chemotaxonomy by cluster analysis. Journal of Agricultural and Food Chemistry 46, 3741-3746.

Sanchez-Moreno C. 2002. Methods used to evaluate the free radical scavenging activity in foods and biological systems. Int. Jour. Foods Sc. Tech 8, 121-137.

Sandri IG, Zacaria J, Fracaro F, Delamare APL, Echeverrigaray S. 2007. Antimicrobial activity of the essential oils of Brazilian species of the genus Cunila against foodborne pathogens and spoiling bacteria. Food Chemistry 103, 823-828.

Scherer R, Godoy HT. 2009. Antioxidant activity index (AAI) by 2, 2-diphenyl-1-picrylhydrazyl method. Food Chemistry 112, 654:658.

Stoilova I, Krastanov A, Stoyanova A, Denev P, Gargova S. 2007. Antioxidant activity of a ginger extracts (Zingiber officinale). Food Chemistry 102, p 764 -770.

Tajkarimimm, Ibrahim SA, et Cliver, DO. 2010. Antimicrobial herb and spice compounds in food. Food control 21, 1199-1218.

Tepe B, Sokmen M, Akpulat H, Sokmen A. 2005. In vitro antioxidant activities of the methanol extracts of five species from Turkey. Food Chemistry 92(1), 89–92.

Tonzibo ZF. 1998. Contribution à l’étude des huiles essentielles des espèces acclimatées en Côte d’ivoire. Eucalptus citrodora, Ocimum gratissimum et Ocimum basilicum. Thèse de3eme cycle, chimie organique, Université de Cocody-Abidjan, Côte d’Ivoire 136 p.

Vekiari SA, Protopapadakis EE, Papadopoulou P, Papanicolaou D, Panou C, Vamvakias M. 2002. Composition and seasonal variation of the essential oil from leaves and peel of a lemon variety. Journal of Agrcultural and Food Chemistry 5(1), 147-153.

Yadegarinia D, Gachkar L, Bagher Rezaei M, Taghizadeh M, Astaneh SA, Rasooli I. 2006. Biochemical activities of Iranian Mentha piperita L. and Myrtus communis L. essential oils. Phytochemistry 67, 1249-1255.